Sardar Patel University

B.Sc. Sem-VI

Subject : Mathematics

US06CMTHO5 [Graph Theory]

Max.Marks: 70

Time: 3:30 to 05:30

	Date	:0410/2022						Time	a: 3:3	lo to	
Q.1	. Choose t	he correct op	tion for	each of the f	ollowii	ng.				[10]	
	(1) If the	If there are 4 edges in a simple graph then total degrees of vertices of the graph is									
	(a)	6	(b)	8	(c)	10	(d)	None of t	hese		
	(2) degr	ee of isolated	vertex i	s ,							
	(a)	2	(b)	1	(c)	0	(d)	None of t	hese		
	(3) An Edge whose end points are the same vertex is called										
	(a)	trivial graph	(b)	multigraph	(c)	loop	(d)	None of t	hese		
	(4) A graph with each vertices has even degree is called										
	(a) L	Iniversal grap	h (b)	Euler graph	(c)	Subgraph	(d)	None of	these		
	(5) An op	eration of ed	ge deleti	ion on a grapl	h remo	ves correspo	onding				
	(a)	edge only	(b)	vertices	(c) v	vertices and e	edges bot	h (d) Non	e of thes	ie.	
ė	(6) A Hai	miltonian Pat	h in a gra	ph traverses	throug	gh					
	(a)	all vertices	(b)	all edges	(c)	all vertices a	nd edges	(d) Nor	ne of the	se	
	(7) A spa	nning tree T	of graph	G contains al	I the	of G.					
	(a)	edges	(b)	faces	(c)	vertices		(d) re	egions		
	(8) Vertex connectivity Edge connectivity										
	(a)	≥	(b)	≤	(c)	>		(d)	<		
	(9) If graphs G_1 and G_2 are isomorphic and nullity of G_1 is 7 then nullity of G_2 is										
	(a)	7	(b)	14	(c)	21		(d)	49		
	(10) A simple planar graph with 10 edges and 7 vertices has faces										
	(a)	5	(b)	7	(c	:) 9	-	(d)	10		
Q.2	Do as dir	ected.								[8]	
((1) True o	r False :The N	ull graph	has at least	one ed	lge.					
((2) True or False: The degree of a pendant vertex is one.										
((3) True or False: A connected graph must have exactly one spanning tree.										
((4) The ring sum of two graphs does not include										
((5) A collection of trees in a graph is called										
((6) Rank of a graph G is given by $r = \dots$										
((7) True or False: The geometric dual of a graph exists if it is Planar.										
(8) K _{3,3} is .	graph.		·							

- (1) Define: A graph.
- (2) Discuss: Konigsberg bridge Problem.
- (3) Define: Length of path.
- (4) Draw all labeled trees with four vertices.
- (5) Define: A Complete graph with an example.
- (6) Define: Arbitrary traceable graph with an example.
- (7) Explain Spanning Tree with an example.
- (8) Define: Vertex connectivity.
- (9) Define: Fundamental circuit of a graph.
- (10) Define: Homeomorphic Graphs.
- (11) Define: Circuit correspondence.
- (12) Discuss Kuratowski's First graph.

Q.4 Attempt any Four.

[32]

- (1) Prove that a graph G is disconnected iff its vertex set V can be partitioned into two non-empty disjoint subsets V_1 and V_2 such that there exists no edge in G whose one end vertex is in subset V_1 and other in subset V_2 .
- (2) If a graph has two vertices of odd degree then prove that there must be a path between them.
- (3) Prove that a graph is a tree if and only if it is minimally connected.
- (4) Prove that there is one and only one path between every pair of vertices in a tree.
- (5) Describe a method to finding all spanning trees of a graph.
- (6) Prove that every cut-set has in a connected graph G must contain atleast one branch of every spanning tree.
- (7) State and Prove Euler's theorem for planar graphs.
- (8) Prove that a graph has a dual iff it is planar.

