

SEAT	No
Carl Research Co. B.	0 4 6 s

No. of Printed Pages: 2

CIOI

SARDAR PATEL UNIVERSITY **BSc Sem VI Examination** Mathematics

US06CMTH04-Abstract Algebra-II

	SOCOURILIE !	, mariate , 118 cm, a si	
Date:03-10-22			

Date:0	3-10-22	5500CW11104-A550	ract Aigeord	Time:03-30 to 05-30			
Q. 1 A	nswer the following b	y selecting correct cho	ice from the options.	(10)			
1	is not an integra	al domain.					
	a) $\mathbb Z$	b) $M_2(\mathbb{R})$	c) Q	d) none			
2	is a ring with un	ity.					
	a) Z	b) Q	c) R	d) all of these			
3. Th	3. The characteristic of ring $\mathbb Z$ is						
	a) 0	b) 1	c) 2	d) none			
4. Qu	otient field of $ \mathbb{Z} $ is $ _ $	·	-				
	a) Z	b) Q	c) R	d) all of these			
5. If $f\colon \mathbb{R} \to \mathbb{R}$ is a homomorphism then $f(a) = \underline{\hspace{1cm}}$, $a\in \mathbb{R}$							
	a) R	b) 0	c) Z	d) none			
6. Th	e ideal other than $\{0\}$	and R in a ring R is ca	lled				
	a) proper	b) improper	c) trivial	d) non-trivial			
7. Ev	ery integral domain ca	n be imbedded in a					
	a) Z	b) N	c) Field	d) Ring			
8. a is divisor of b if, for some $c \in R$							
	a) $a = bc$	b) $b = ac$	c) $c = ab$	d) $b=c$			
9. If <i>I</i>	F is a field, $f(x) \in F[x]$	$[\alpha], \alpha \in F$ is a root of $f(\alpha)$	(x) then				
	a) $(x + \alpha) f(x)$	b) $(x - \alpha) f(x)$	c) $f(x) (x-\alpha)$	$d) f(x) (x + \alpha)$			
10. If	$R = \mathbb{Z} + i\mathbb{Z}, \ f(x) = 1$	$2x^2 - (1+i)x - 2$ th	en content of f is $__$				
	a) $2 - i$	b) $2 + i$	c) $1 - i$	d) $1 + i$			
Q.2 Do as directed. (8)							
1) True or False: \mathbb{Z}_5 is an integral domain.							
	2) Fill in the blank: Every subring is an in a ring(ideal/not an ideal).						
3) True or False: Z is a not a field.							
4)							
5)							
6)				is(irreducible/			

- 7) True or False: If F is a field, degree of $f(x) \in F[x]$ is n then f(x) has at least n distinct roots.
- 8) True or False: If $f(x) = x^4 2x^2 + 1$ and $g(x) = x^3 + x + 1$ are polynomials in $\mathbb{R}[x]$ then deg(fg) is 12.

Q. 3 Answer any TEN.

(20)

- 1) Define Ring with unity with example.
- 2) Define Characteristic of ring.
- **3)** Find Characteristic of \mathbb{Z}_3 .
- **4)** In a ring $(R, +, \cdot)$ prove that $a \cdot 0 = 0 \cdot a = 0$.
- 5) Define Simple Ring.
- 6) Find invertible elements of ring \mathbb{Z} , if any.
- 7) What are improper ideals?
- 8) Define Associates in a ring.
- 9) Prove that 1 + 2i and 2 i are associates in $\mathbb{Z} + i\mathbb{Z}$.
- **10)** Find all roots of $x^3 + 5x$ in \mathbb{Z}_6 .
- 11) Define content of polynomial.
- **12)** Prove that 1 + 3i divides 10 in $\mathbb{Z} + i\mathbb{Z}$.

Q.4 Attempt any FOUR.

(32)

- 1) Prove that every finite integral domain is a field.
- 2) Prove that the only isomorphism of $\mathbb R$ onto $\mathbb R$ is the identity map $I_{\mathbb R}$.
- 3) Prove that $m\mathbb{Z}$ is an ideal in \mathbb{Z} for $m \geq 0$.
- 4) Prove that every Simple Ring need not be a field.
- 5) Let $R = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}$, show that $1 + 2\sqrt{-5}$ and 3 are relatively prime.
- 6) Show that the ring of Gaussian integers is an Euclidean domain.
- 7) Let R be a commutative ring and $f(x), g(x) \in R[x]$ then prove that
- 8) State and prove Eisenstein's criterion.

