| SEAT | No. | |------------------------|---------| | - C E C C C C C C C C- | : V V . | ## No. of Printed Pages: 3 10 | TA | -14 | 7 | |----|-----|---| | | | | | Subj | ect: Mathem | atics | US06CMT
Topolog | gy | Max. Marl | • | |--------|--|--|--|--|---------------|----------------| | Date: | 01/10/2022, S | aturday | | Timing: | 03.30 pm - 05 | 5.30 pm | | Instru | ction: The symb | ools used in the pap | oer have their us | ual meaning, unless | s specified. | | | | | | | | | | | Q: 1. | Answer the follo | owing by choosing | g correct answer | rs from given choic | ces. | | | [1] | Any topology of [A] coarser than | | | ndiscrete topology
[C] non-comparab | on that set. | none | | [2] | In a topological [A] [B] [C] [D] | space (X, \mathcal{T}) , ever can not be a neighbourhous is \mathcal{T} -closed also none | ghbourhood of | | | | | [3] | In a topological [A] \mathcal{T} -open | I space (X, \mathcal{T}) , a [B] \mathcal{T} -closed | neighbourhood
l [C] e | of a point is
ither open or close | ed [D] | none | | [4] | If A is a closed $[A]$ $A \subset A'$ | set in a topologic [B] A^- | cal space then $\neq A$ | [C] $A = A'$ | [D] A | $A' \subset A$ | | [5] | Minimum numl | ber of open as we
[B] 1 | ll as closed sub | sets in a topologic
[C] 2 | al space is | [D] 3 | | [6] | [A]
[B]
[C] | set then every per an interior point of a cluster point of an interior point neither an interior | t of G of G t as well as clus | ter point of G cluster point of G | | | | [7] | [A] the | oty and bounded g.l.b. in R b. and l.u.b. in I | • | R posseses [B] the l.u.b. in [D] none | R | | | [8] | [A] the | oty and bounded e.g.l.b. in R b. and l.u.b. in I | | [B] the l.u.b. in $[D]$ none | R | | | [9] | In the relativiz
[A] Compact | zed topology of ${\cal U}$
[B] Disc | -topology of R
onneceted | the subset [1, 10] i
[C] Unbound | is
ed [I | o] none | | [10] | A Hausdorff S $[A]$ T_1 | pace is also called $[\mathrm{B}]\ T_2$ | l a
[(| C] T_3 | [D] Regular | Space | - Q: 2. In the following, depending on the type of question either fill in the blank or answer whether a statement is true false 08 [1] If (X,T) is a topological space then every subset of X is a closed set(True/False?) [2] If (X,T) is a topological space then every subset of X must be either a closed set or an open set(True/False?) [3] Every set has at least one interior point (True/False?) [4] If closure of a set is same as the set then the set must be closed (True/False?) [5] In a (R, \mathcal{U}) the subspaces (0, 1) and (0, 100) are homeomorphic (True/False). [6] Let f be a function from a topological space (X,T) into another topological space (Y,V)such that $A \subset X$ is connected but f(A) is not connected in Y. Then f is not continuous on X. (True/False). [7] T₁ Space and Regular spaces are same.(True/False?) [8] A T_1 space is a Housdorff space. (true/False?) Q: 3. Answer ANY TEN of the following. 20 [1] Define: (i) Usual Topology of R (ii) Open Set [2] Give an example of a Door Space [3] If $X = \{a, b, c\}$ then find three topologies \mathcal{T}_1 , \mathcal{T}_2 and \mathcal{T}_3 for X such that $\mathcal{T}_1 \subsetneq \mathcal{T}_2 \subsetneq \mathcal{T}_3$ [4] Find \mathcal{U} -closures of the sets \mathbb{R} and \emptyset . [5] For any topologies \mathcal{T} and Ψ of \mathbb{R} show that the mapping $f:\mathbb{R}\to\mathbb{R}$ where $f(x) = 2, \forall x \in \mathbb{R}, \text{ is } \mathcal{T}\text{-}\Psi \text{ continuous}$ [6] Find U-closures of the sets \mathbb{R} and \emptyset . [7] Let $f:[0,1]\to R$ be continuous on [0,1]. Is f([0,1]) connected? [8] State the Least Upper Bound property of R[9] Prove that a continuous image of connected space is connected [10] Give an example of a T_1 -space that is not a T_2 -space [11] Prove that the space (R, \mathcal{U}) is a T_2 -space. - [1] If (X, \mathcal{T}) is a topological space and $\{F_{\alpha} / \alpha \in \Lambda\}$ is any collection of \mathcal{T} -closed subsets of X then prove that $\bigcap \{F_{\alpha} / \alpha \in \Lambda\}$ is a \mathcal{T} -closed set 32 [12] Prove that every metric space is a Hausdorff space Attempt any FOUR of the following. Q: 4. - [2] Let J be the set of all integers and $\mathcal J$ be a collection of subsets G of J where $G \in \mathcal J$ whenever $G = \emptyset$ or $G \neq \emptyset$ and $p, p \pm 2, p \pm 4, ..., p \pm 2n, ...$ belong to G whenever $p \in G$. Prove that $\mathcal J$ is a topology for J - [3] Let (X, \mathcal{T}) be a topological space and let A be a subset of X and A' be the set of all cluster points of A. Prove that A is \mathcal{T} -closed iff $A' \subset A$ - [4] Let (X, \mathcal{T}) be a topological space and A be a subset of X. Prove that $A \cup A'$ is \mathcal{T} -closed - [5] Show that a relative topology satisfies all the conditions for becoming a topological space - [6] Assuming that connectedness is a topological property prove that (R, \mathcal{U}) and (R, \mathcal{G}) are not homeomorphic where \mathcal{U} is usual topology for R and \mathcal{G} is defined as follows $G \in \mathcal{G}$ if either G empty or it is a nonempty subset of R such that for every $p \in G$ there is some $H = \{x \in R/a \leq x < b\}$ for a < b such that $p \in H \subset G$. - [7] Prove that the space (R, \mathcal{U}) is a T_3 -space. - [8] If (X, \mathcal{T}) is a compact space, and if f is a $\mathcal{T} \psi$ continuous mapping of X into R, then prove that f is bounded.