SEAT	No.
- C E C C C C C C C C-	: V V .

No. of Printed Pages: 3

10

TA	-14	7

Subj	ect: Mathem	atics	US06CMT Topolog	gy	Max. Marl	•
Date:	01/10/2022, S	aturday		Timing:	03.30 pm - 05	5.30 pm
Instru	ction: The symb	ools used in the pap	oer have their us	ual meaning, unless	s specified.	
Q: 1.	Answer the follo	owing by choosing	g correct answer	rs from given choic	ces.	
[1]	Any topology of [A] coarser than			ndiscrete topology [C] non-comparab	on that set.	none
[2]	In a topological [A] [B] [C] [D]	space (X, \mathcal{T}) , ever can not be a neighbourhous is \mathcal{T} -closed also none	ghbourhood of			
[3]	In a topological [A] \mathcal{T} -open	I space (X, \mathcal{T}) , a [B] \mathcal{T} -closed	neighbourhood l [C] e	of a point is ither open or close	ed [D]	none
[4]	If A is a closed $[A]$ $A \subset A'$	set in a topologic [B] A^-	cal space then $\neq A$	[C] $A = A'$	[D] A	$A' \subset A$
[5]	Minimum numl	ber of open as we [B] 1	ll as closed sub	sets in a topologic [C] 2	al space is	[D] 3
[6]	[A] [B] [C]	set then every per an interior point of a cluster point of an interior point neither an interior	t of G of G t as well as clus	ter point of G cluster point of G		
[7]	[A] the	oty and bounded g.l.b. in R b. and l.u.b. in I	•	R posseses [B] the l.u.b. in [D] none	R	
[8]	[A] the	oty and bounded e.g.l.b. in R b. and l.u.b. in I		[B] the l.u.b. in $[D]$ none	R	
[9]	In the relativiz [A] Compact	zed topology of ${\cal U}$ [B] Disc	-topology of R onneceted	the subset [1, 10] i [C] Unbound	is ed [I	o] none
[10]	A Hausdorff S $[A]$ T_1	pace is also called $[\mathrm{B}]\ T_2$	l a [(C] T_3	[D] Regular	Space

- Q: 2. In the following, depending on the type of question either fill in the blank or answer whether a statement is true false 08 [1] If (X,T) is a topological space then every subset of X is a closed set(True/False?) [2] If (X,T) is a topological space then every subset of X must be either a closed set or an open set(True/False?) [3] Every set has at least one interior point (True/False?) [4] If closure of a set is same as the set then the set must be closed (True/False?) [5] In a (R, \mathcal{U}) the subspaces (0, 1) and (0, 100) are homeomorphic (True/False). [6] Let f be a function from a topological space (X,T) into another topological space (Y,V)such that $A \subset X$ is connected but f(A) is not connected in Y. Then f is not continuous on X. (True/False). [7] T₁ Space and Regular spaces are same.(True/False?) [8] A T_1 space is a Housdorff space. (true/False?) Q: 3. Answer ANY TEN of the following. 20 [1] Define: (i) Usual Topology of R (ii) Open Set [2] Give an example of a Door Space [3] If $X = \{a, b, c\}$ then find three topologies \mathcal{T}_1 , \mathcal{T}_2 and \mathcal{T}_3 for X such that $\mathcal{T}_1 \subsetneq \mathcal{T}_2 \subsetneq \mathcal{T}_3$ [4] Find \mathcal{U} -closures of the sets \mathbb{R} and \emptyset . [5] For any topologies \mathcal{T} and Ψ of \mathbb{R} show that the mapping $f:\mathbb{R}\to\mathbb{R}$ where $f(x) = 2, \forall x \in \mathbb{R}, \text{ is } \mathcal{T}\text{-}\Psi \text{ continuous}$ [6] Find U-closures of the sets \mathbb{R} and \emptyset . [7] Let $f:[0,1]\to R$ be continuous on [0,1]. Is f([0,1]) connected? [8] State the Least Upper Bound property of R[9] Prove that a continuous image of connected space is connected [10] Give an example of a T_1 -space that is not a T_2 -space [11] Prove that the space (R, \mathcal{U}) is a T_2 -space.
 - [1] If (X, \mathcal{T}) is a topological space and $\{F_{\alpha} / \alpha \in \Lambda\}$ is any collection of \mathcal{T} -closed subsets of X then prove that $\bigcap \{F_{\alpha} / \alpha \in \Lambda\}$ is a \mathcal{T} -closed set

32

[12] Prove that every metric space is a Hausdorff space

Attempt any FOUR of the following.

Q: 4.

- [2] Let J be the set of all integers and $\mathcal J$ be a collection of subsets G of J where $G \in \mathcal J$ whenever $G = \emptyset$ or $G \neq \emptyset$ and $p, p \pm 2, p \pm 4, ..., p \pm 2n, ...$ belong to G whenever $p \in G$. Prove that $\mathcal J$ is a topology for J
- [3] Let (X, \mathcal{T}) be a topological space and let A be a subset of X and A' be the set of all cluster points of A. Prove that A is \mathcal{T} -closed iff $A' \subset A$
- [4] Let (X, \mathcal{T}) be a topological space and A be a subset of X. Prove that $A \cup A'$ is \mathcal{T} -closed
- [5] Show that a relative topology satisfies all the conditions for becoming a topological space
- [6] Assuming that connectedness is a topological property prove that (R, \mathcal{U}) and (R, \mathcal{G}) are not homeomorphic where \mathcal{U} is usual topology for R and \mathcal{G} is defined as follows $G \in \mathcal{G}$ if either G empty or it is a nonempty subset of R such that for every $p \in G$ there is some $H = \{x \in R/a \leq x < b\}$ for a < b such that $p \in H \subset G$.
- [7] Prove that the space (R, \mathcal{U}) is a T_3 -space.
- [8] If (X, \mathcal{T}) is a compact space, and if f is a $\mathcal{T} \psi$ continuous mapping of X into R, then prove that f is bounded.