[17]

SARDAR PAŤĚĽÚNIVERSITY

EXAMINATION - 2022 B.Sc.(SEMESTER - VI) Friday, 30nd September 2022 MATHEMATICS: US06CMTH02

(Complex Analysis)

$\Gamma ime: 03:30 \ p.m. \ to 05:30 \ p.r$	Time	: 03:30	p.m.	to	05:30	p.m
---	------	---------	------	----	-------	-----

Maximum Marks: 70

Que.1 Fill in the blanks.

10

(1) Domain of $f(z) = \frac{z}{z + \bar{z}}$ is

- (a) $\{z \in \mathbb{C} \ / \ Imz = 0\}$ (b) $\{z \in \mathbb{C} \ / \ Rez \neq 0\}$ (c) $\{z \in \mathbb{C} \ / \ Imz \neq 0\}$
- (d) $\{z \in \mathbb{C} \mid Rez \neq 1\}$

(2) $f(z) = (x^2 - y^2 - 2y) + i(2x - 2xy)$ can be expressed as $f(z) = \dots$

(a) $\bar{z}^2 + 2z$ (b) $\bar{z}^2 + iz$ (c) $\bar{z}^2 - 2iz$ (d) $\bar{z}^2 + 2iz$

(3) $\lim_{z \to \infty} f(z) = \infty$ iff = 0

(a) $\lim_{z \to \infty} \frac{1}{f(z)}$ (b) $\lim_{z \to 0} \frac{1}{f\left(\frac{1}{z}\right)}$ (c) $\lim_{z \to 0} f\left(\frac{1}{z}\right)$ (d) $\lim_{z \to 0} \frac{1}{z}$

- (4) If $f(z) = 2x + iy^2x$ then f is differentiable at
 - (a) 2 (b) 1 (c) 0 (d) none of these

(5) $f(z) = \frac{z^3 + i}{(z^2 - 3z + 2)}$ is analytic in

- (a) $\{\pm\sqrt{1}, \pm2\}$ (b) $\mathbb{C} \{1, 2\}$ (c) $\mathbb{C} \{3, \pm2\}$ (d) $\{1, 2\}$
- (6) If C-R equations are not satisfied at z_0 then f(z) is at z_0 .
 - (a) differentiable (b) not differentiable (c) need not be differentiable (d) none of these
- (7) if e^z is purely imaginary then $Imz = \dots, n \in \mathbb{Z}$.
 - (a) $(2n+1)\pi$ (b) $2n\pi$ (c) π (d) $(2n+1)\pi/2$
- (8) $\cos iy = \dots$
 - (a) $\cosh y$ (b) $i\cos y$ (c) $-\cosh y$ (d)
- (9) Image of x > 0 under the transformation w = (1+i)z is
 - (a) u < v (b) v < u (c) u < -v (d) u > -v

(10) Fixed point of $w = \frac{z-1}{z+1}$ are

(a) $\pm i$ (b) i (c) -1 (d) 3

Que.2 Write TRUE or FALSE.

[8]

(1) Cartesian form of $f(z) = z^2$ is $f(z) = x^2 - y^2 + i2xy$

(2) $\lim_{z \to z_0} f(z) = \infty$ iff $\lim_{z \to z_0} \frac{1}{f(z)} = 0$

(3) Singular point of $f(z) = \frac{z^3 + 4}{(z^2 - 3)}$ is $z = \pm \sqrt{3}i$

- (4) If $u(x,y) = y^3 3x^2y$ then $u_{xx} + u_{yy} = 1$
- $(5) exp(z+\pi i)=e^z.$
- (6) e^z is periodic function with period $2n\pi i$, $n \in \mathbb{Z}$
- (7) The image of line $x=c_1$, $c_1\neq 0$ under the transformation w=1/z is circle.
- (8) If $T(z) = \frac{az+b}{cz+d}$, $(ad-bc \neq 0)$. Then $\lim_{z\to\infty} T(z) = c/a$, if $c\neq 0$.

Que.3 Answer the following (Any ten)

20

- (1) Express $f(z) = z^3 + z + 1$ in cartesian form.
- (2) Evaluate $\lim_{z\to 0} \frac{z}{\bar{z}}$, if possible.
- (3) By using definition, prove that $\frac{d}{dz}(z^n) = nz^{n-1}$ for all $n \in \mathbb{Z}$.
- (4) Check that $f(z) = \sin x \cosh y + i \cos x \sinh y$ is entire or not.
- (5) Prove that $e^{-y} \sin x$ and $-e^{-y} \cos x$ are harmonic at each point of domain of xy-plane.
- (6) Prove that $f(z) = e^{i\bar{z}}$ is nowhere analytic.
- (7) Prove that $\overline{exp(iz)} = exp(i\overline{z})$ iff $z = n\pi$, $n \in \mathbb{Z}$.
- (8) Prove that $|\cosh z|^2 = \sinh^2 x + \cos^2 y = \cosh^2 x \sin^2 y$.
- (9) Evaluate $log(-1-\sqrt{3}i)$ and log(ei).
- (10) Find the image of 0 < x < 1, 0 < y < 1 under the transformation w = iz. Also sketch the region.
- (11) Find the image of $0 < y < \frac{1}{2c}$ under the transformation w = 1/z. Also sketch the region.
- (12) Find the image of $a \le x \le b$; $0 \le y \le \pi$ under the transformation $w = e^z$. Also sketch the region.

Que.4 Attempt the following (Any FOUR)

[32]

- (1) If $f(z) = \frac{x^3 y(y ix)}{z(x^6 + y^2)}$, $z \neq 0$, f(0) = 0
 - (i) Is f(z) continuous at 0? (ii) Is f(z) differentiable at 0?
- (2) If f and g are differentiable then prove that fg and f/g are differentiable.
- (3) Let f(z) = u(x,y) + iv(x,y). If f'(z) exist at $z_0 = x_0 + iy_0$ then prove that the first order partial derivatives of u and v must exist at (x_0, y_0) and they satisfies the Cauchy-Reimann equations $u_x = v_y$; $u_y = -v_x$ at (x_0, y_0) . Under which condition converse of above statement hold. Prove it.
- (4) Find a harmonic conjugate v(x,y) for $u(x,y) = 2x x^3 + 3xy^2$.
- (5) Prove that $tanh^{-1}z$ is multiple valued function.
- (6) Solve the equation $\sinh z = i$ and $e^z = \sqrt{3} i$
- (7) Prove that all linear fractional transformation that maps the upper half plane Imz>0 on to the open disk |w|<1 and the boundary $Im\ z=0$ on to the boundary of |w|=1 is given by $w=e^{i\alpha}\left[\frac{z-z_0}{z-\overline{z_0}}\right]$, $(Im\ z_0>0)$. Also prove the converse.
- (8) Find linear fractional transformation that maps the points $z_1 = 2$, $z_2 = i$, $z_3 = -2$ on to $w_1 = 1$, $w_2 = i$, $w_3 = -1$ respectively.