

[12/A-15]

SARDAR PATEL UNIVERSITY <u>SEMESTER-VI</u>

B.Sc. EXAMINATION MICROBIOLOGY

US06CMIC03

(Microbial Biochemistry)

Date: 01 /10/2022	Time: 3.30p.m. to 5.30p.m.	
Day: Saturday	Total marks: 70	

N.B: Figures on the right indicate marks.

(1					uestion from the given options.	(10)		
	1	How many ATPs are produced when FADH2 transfer it's electron to respiratory chain?						
		(a)	1	(b)	1.5			
		(c)	2.5	(d)	3.5			
	2		spolypeptide chains.	·				
		(a)	9	(b)	8			
		(c)	7	(d)	6			
	3	(-)	is a valuable technique use	d for studying inte	rmediary metabolism.	4		
	Ů	(a)	RNA splicing	(b)	Hybridization			
		(c)	Phage typing	(d)	Pulse labeling			
	4	6Phos	sphogluconic acid is converted t	o Ribulose-5 Pho	sphate by			
	-1	(a)		. (b)	Oxidative decarboxylation			
		(c)	Interconversion	(d)	Phosphorylation			
	5		lerotic reaction means	, ,				
	•	(a)	Throwing up	(b)	Throwing down			
		(c)	Filling up	(d)	Filling down			
	6	The acceptor molecule for the acetyl group and melonyl group is						
	•	(a)	DCP	(b)	ATP			
		(c)	GTP	(d)	ACP			
	7	(D) A delde ATDo						
	•	(a)	180	(b)	118			
		(c)	108	(d)	119			
	8		discovered the involvement of	of Melonyl COA w	ith Acetyl COA to form fatty acid.			
		(a)	Fritz knoop	(b)	Sahil Wakil			
		(c)	Efrain Racker	(d)	John Walker	•		
	9	All tansaminases require coenzyme derived from VitaminB ₆						
		(a)		(b)	Pyridoxal phosphate			
		(c)	Biotin	(d)	Lipoic acid			
	10	V ² /						
	. •	(a)	B- aspartyl semialdehyde	(b)	a-amino adipic acid			
		(c)	Chorismate	(d)	Prephanate	Page		

Q.2	(A)	State if the given statements are True or False.	(80)
	1	One gene – one enzyme hypothesis was proposed by Jacob & Monod .	
	2	E.D. biochemical pathway generating large amount of reducing power.	
	3	The general formula of Fatty acid is RCH ₂ CH ₂ .COOH.	
	4	Citrulline amino acid is regenerated during Urea cycle.	
	(B)	Give the appropriate answers for the given blanks.	
	1	Fo component of ATP synthase is inhibited by	
	2	In plants, glyoxylate cycle takes place in	
	3	is a poly unsaturated fatty acid.	
	4	is a precursor for Isoleucine.	
Q.3		Give short answers to the following questions (Attempt Any Ten)	(20)
	1	Define: Secondary metabolism and Auxotroph .	
	2	Draw a chemical structure of ATP.	
	3	Define: ETC and Fermentation	
	4	Explain three irreversible reactions involved in gluconeogenesis.	
	5	In non-physiological state, how TCA cycle reactions are regulated?	
	6	Explain the four different Anaplerotic reactions.	
	7	Explain reaction where role of Acetyl CoA carboxylase is involved.	
	8	Define: α-Oxidation and ω-Oxidation of fatty acid	
	9	What are the major differences between β-Oxidation of fatty acid and fatty acid biosynthesis?	
	10	Define: Transamination,	
	11	What is Stickland reaction?	
	12	Explain Oxidative deamination with its reaction.	
Q.4		Answer the following long questions:- (Attempt any FOUR)	(32)
	1.	Draw a neat labeled diagram of ATP Synthase and discuss its chemical composition and binding change mechanism.	(02)
	2.	Describe the use of biochemical mutants as a method of studying intermediary metabolism.	
	3.	Write on: HMP Shunt with its energetics.	
	4	Write on: Hans Kreb cycle with its energetics.	
	5	Describe reactions involved in β-oxidation of Palmitoyl COA with its energetics.	
	6	Describe in detail about reactions involved in biosynthesis of fatty acid.	
	7	Discuss Krebs-Hansleit cycle.	
	8	Enlist and discuss the steps involved in biogenesis of murein.	
		•	
