

Seat	No.:	

No. of Pages: 03

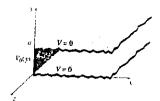
[26]

SARDAR PATEL UNIVERSITY

BSc Examination 2022

Semester: VI

		Subjec	ct: Physics Co	ourse:	US06CPHY24		
		Elec	trodynamics an	d Pla	sma Physics		
Date:	27- 6·	-22, <i>የ</i> ሃ)@∌) day	Time: @ .00 @ n	ı to 🎏	2.00 pm Total Mark	κs: 70	
INSTE	RUCTIO	NS:					
1 2 3	The sy	ot all questions. Imbols have their usu s to the right indicate					
Q-1	Mult	iple Choice Quest	ions: [Attempt a	alij	3, 1, 2, 3	10	
(1)	The	charge density insid	de a conductor is	S			
	(a)	Zero		(b)	Positive		
	(c)	Negative		(d)	Infinite		
(2) The general solution of one-dimensional Laplace's equation $\frac{d^2V}{dx^2} = 0$ is							
	(a)	V(x) = constant		(b)	V(x) = mx + b		
	(c)	$V(x) = \log x$		(d)	$V(x) = ax^2 + bx + c$		
(3)	$\nabla^2 V$	$=-rac{ ho}{\epsilon_0}$ is called	•				
	(a)	Newton's equation	on	(b)	Laplace's equation		
	(c)	Poisson's equation	on	(d)	Maxwell's equation		
(4)	lron ((Fe) isı	material.				
	(a)	Ferromagnetic		(b)	Polarized		
	(c)	Diamagnetic		(d)	Nonpolarized		
(5)	The f	The torque on a magnetic dipole is given as					
	· (a)	$N = m \cdot P$		(b)	$N = m \cdot B$		
	(c)	$N = m \times P$		(d)	$N = m \times B$		
(6)	The a	auxiliary field is	·•				
	(a)	$H=\frac{1}{\mu_0}(B-M)$		(b)	$H = \frac{1}{\mu_0}B - M$		
	(c)	$H=\mu_0(B-M)$		(d)	$H = \mu_0 B - M$	1	
(7)	For E	For $E = 0$ and uniform B , the trajectory of a charged particle moving with any					
		ary velocity v_z alon			-	C 4	
	(a)	Circular		(b)	Straight line		
	(c)	Helix		(d)	Elliptical	. *	


(8)	The magnetic mirror was first proposed by			as a mechanism for the				
	acce	eleration of cosmic rays.						
	(a)	Newton	(b)	Einstein				
	(c)	Robert Hooke	(d)	Enrico Fermi				
(9)	The	The neutral fluid will interact with the ions and electrons only through						
	(a)	Pressure	(b)	Collision				
	(c)	Mixing	(d)	Reaction				
(10)	For i	ion waves, the group velocity is	1	he phase velocity.				
٠	(a)	Less than	(b)	Greater than				
	(c)	Equal	(d)	None of these				
Q-2	Fill in the blanks (1) to (4), and state True or False (5) to (8):							
(1)								
		ield in the cavity will (be ze						
(2)		e materials acquire magnetization						
		magnets / Paramagnets)	, ,					
(3)	The	conversion factor of temperature use	ed in t	he plasma physics is				
		1eV = (1160 °K / 11600 °K).						
(4)	$\frac{dG}{dt} = \frac{\partial G}{\partial t} + (u \cdot \nabla)G$ is called (Convective derivative / temperature derivative)							
(5)	The induced dipole moment in dielectric is proportional to the E . (True / False)							
(6)	A magnetic dipole never experiences a torque in a magnetic field. (True / False)							
(7)	The magnetic moment of the gyrating particle is $\mu = \frac{\frac{1}{2}mv_1^2}{B}$ (True / False)							
(8)	$\rho \left[\frac{\partial u}{\partial t} + (u \cdot \nabla)u \right] = -\nabla p + \rho \nu \nabla^2 u \text{ is called Navier-Stokes equation. (True / False)}$							
Q-3	Short Answer Questions. (Attempt any ten)							
(1)	Define electric polarization.							
(2)	Write Laplace's equation in Cartesian coordinate system (in three dimensions).							
(3)	Find the capacitance of two concentric spherical metal shells, with radii a and b.							
(4)	Discuss Ohm's law.							
(5)	Define Magnetization.							
(6)	Write equations of electrodynamics before Maxwell.							
(7)	Define Plasma.							
(8)	Give three conditions that an ionized gas must satisfy to be called a plasma.							
(9)	Discuss the loss cone for magnetic mirror.							
(10)	Which phenomenon is called Langmuida Paradaya							

- (11) Write a note on equation of continuity.
- (12) What is the difference between plasma oscillations and ion waves?

Q-4 Long Answer Questions. (Attempt any four)

32

- (1) Define conductor and discuss basic properties of conductor in detail.
- Two infinite grounded metal plates lie parallel to the xz plane, one at y=0, the other at y=a as shown in the figure. The left end, at x=0, is closed off with an infinite strip insulated from the two plates and maintained at a specific potential $V_0(y)$. Find the potential inside this "slot".

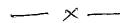
(3) Define magnetic dipole. Show that as the effect of a magnetic field on atomic orbits, a change in the dipole moment is

$$\Delta m = -\frac{e^2 R^2}{4m_e} B.$$

(4) Write a note on inductance and derive Neumann formula for mutual inductance

$$M_{21} = \frac{\mu_0}{4\pi} \oint \oint \frac{d\mathbf{I}_1 \cdot d\mathbf{I}_2}{r}.$$

(5) Discuss Debye's shielding and obtain expression for Debye length


$$\lambda_D \equiv \left(\frac{\epsilon_0 K T_e}{ne^2}\right)^{\frac{1}{2}}.$$

- (6) Discuss motion of a single charged particle in the uniform magnetic field *B*. Obtain the expression for the Larmor radius.
- (7) Write fluid equation and discuss fluid drift parallel to magnetic field **B**. Derive expression for diamagnetic drift:

$$\boldsymbol{v}_D = -\frac{\boldsymbol{\nabla} p \times \boldsymbol{B}}{q n B^2}.$$

(8) Define plasma frequency and derive expression for the plasma frequency:

$$\omega_p = \left(\frac{n_0 e^2}{m\epsilon_0}\right)^{\frac{1}{2}}.$$

