

[25]

SARDAR PATEL UNIVERSITY

Sixth Semester B. Sc. Examination -2022

Thursday 23 June 2022 Time: 10:00 to 12:00

PHYSICS: US06CPHY21 (Quantum Mechanics)

		of 11121 (Quantum McChaines)	
			Total Marks: 70
NOLU:	(i) All the symbol have their usual meaning.		
	(ii) Figure at the right side of the		
)	Choose correct option to answer the questions.		[10]
	(1) The limit of region II for square well potential is		
	$(a) -\infty < x < 0$	(b)-a < x <a< td=""><td></td></a<>	
	(c) $a < x < \infty$	(d) $\leq \infty < x < -a$	
	(2) For a bound state of a particl		
	(a) E< 0	(b) E> 0	•
	(c) E = 0	(d) infinity	
		t of two operator A and B, $(A B)^{\dagger} = $	
	(a) $B^{\dagger}A^{\dagger}$	(b) $A^{\dagger}B^{\dagger}$	
	(c) AB	(d) 1	•
	(4) In shorter notation of integra		
	(a) (ϕ, ψ)	$(b)(\phi^*,\psi)$	
-	(c) $(\phi, A \psi)$	(d) $(A \phi, \psi)$	
	(5) Position operator in moment	-	
	(a)iħk	(b) iħp	
	(c) $i\hbar r_{op}$	(d) <i>iħ</i> ∇	
	(6) Kinetic energy of harmonic of	oscillator is	
	(a) nigh	(b) $\frac{1}{2} kx^2$	
	(c) $\frac{p^2}{2m}$	(d) kx	
	(7)Zero-point energy of harmoni	ic oscillator is	-
	(a) 0	(b) ħω	
	$(c) - \frac{1}{2}\hbar\omega$	$(d)\frac{1}{2}\hbar\omega$	
	(8) The potential energy of hydrogen atom is		
	(a) 0	(b) $-\frac{Ze^2}{r}$	
	(c) $\frac{Ze^2}{r^2}$	(d) $\frac{1}{2}kx^2$	
	(9) In a rigid rotator distance between two particle is		
	(a) zero	(b) constant	
	(c) infinite	(d) variable	
	(10) Any wave function having s	symmetry property is said to be of	parity
	(a) odd	(b) zero	
	(c) even	(d) infinite	
			Pagel of 2
			Metal

[4] Q - 2 (a) Fill the blanks (1) If A and B are a canonical conjugate pair of the operator, then [A, B] = (2)If A is an operator and A^{\dagger} is an adjoint operator of A then $(A^{\dagger})^{\dagger} = \underline{}$ (3) For E>0. the particle has a _____ kinetic energy (4) Angular momentum is defined as L =[4] (b) State True or False required (1) Expectation value of self- adjoint operator is complex. (2) Any particle with energy E<0 cannot enter in the region I and III (3) For two system of interacting particle Hamilton $H(1,2) = H_1(1) + H_2(1)$ (4) Time dependent Schrodinger wave equation in shorter form is given by Hu = Eu[20] Q-3 Answer briefly any ten of the following question. Define square well potential. (2) Show that the quantity $\Delta = \frac{\hbar^2}{2ma^2}$ appearing in the discussion of square well potential has unit of energy. (3) Prove that $[x, p] = i\hbar$

- (4) Define non degeneracy of eigen values.
- (5) Write down expression for ∇^2 in spherical polar coordinate.
- (6) Define rigid rotator. State the expression for its energy level separation.
- (7) Define interacting particle.
- (8) Show $L_x x$ -component of angular momentum L commutes with L^2
- (9) Set up the Hamiltonian for simple harmonics oscillator.
- (10) State second postulate of quantum mechanics.
- (11) Define central potential. Write Hamiltonian for a particle in central potential.
- (12) What is rigid rotator? State the expression for its energy level separation.
- Q 4 Answer any four of following questions.
 - (1)Obtain the expression of energy eigen values for a particle in square well potential.
 - (2)Obtain admissible solutions of wave function for a particle in a square well potential for bound states
 - (3) Show that product of uncertainty in observables is of the order of commutator.
 - (4) Explain adjoint and self-adjoint operator. Show that any two eigen function belonging to unequal eigen values of a self-adjoint operator are mutually orthogonal.
 - (5) Obtain operator form of L² in terms of spherical polar co-ordinates

$$L^{2} = \left[\frac{1}{\sin\theta} \frac{\partial}{\partial \theta} \left(\sin\theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^{2}\theta} \frac{\partial^{2}}{\partial \phi^{2}} \right]$$

- (6) Write Hamiltonian for simple harmonic oscillator and obtain expression for its energy eigen value.
- (7) Write a note on isotropic oscillator.
- (8) Derive dimensionless Schrodinger equation for hydrogen atom.

