[24]

SARDAR PATEL UNIVERSITY

Six Semester B. Sc. Examination -2022

Thursday23June 2022

Time: 10:00 Å. M. to 12:00 P. M. Physics US06CPHY01 (Quantum Mechanics)

TotalMarks: 70

Q - 1	Choose correct	t option to answer the o	question.	[10]	
		(I) According to wave function and its first partial derivative should be function of for			
	all value of x				
	(a) zero		(c) infinite		
	(2) The square of magnitude of wave function is called density				
	(a) current	(b) mass	(c) probability	(d) volume	
	(3) In the time independent Schrodinger wave equation HU = EU, E is called				
	(a) heat energy (b) energy eigen value(c) potential (d) potential eigen value				
	(4) The limit of region I of square well potential is				
	$(a) - \infty < x <$	$(0 (b) - \infty < x < -\epsilon$	a (c) - a < x < a	$(d) \infty < x < a$	
	(5) In shorter notation of integral $\int \phi^* \psi d\tau =$				
	(a) (ϕ, ψ) (b) (ϕ^*, ψ) (c) $(\phi, A\psi)$ (d) $(A\phi, \psi)$				
	(6) For the adjoint of the product of the two operator A and B, $(AB)^{\dagger} = \underline{\hspace{1cm}}$				
	(a) $B^{\dagger}A^{\dagger}$	(b) <i>A</i> † <i>B</i> [†]	(c) 1	(d) none of these	
	(7) The commutation relation of position and momentum $[x, p_y] = $				
	(a) zero	(b) one	(c) iħ	(d) - <i>iħ</i>	
	(8) Energy of an is	sotropic oscillator is			
	(a) zero	(b) continuous	(c) discrete	(d) <i>h</i> v	
	(9) Central potential is a function of only				
	(a) r	$(b)\theta$		(d) $rand\theta$	
	(10) Angular momentum is defined as L =				
	(a) $\vec{r} \cdot \vec{p}$	(b) $\vec{r} x \vec{p}$	$(c)\vec{r}x\vec{p}^2$	(d) none of these	
0.3	Eill in the blenks			[8]	
Q-2	Fill in the blanks	oto of a narriala anarm	r E la almesta	(O)	
	(1) For a bound state of a particle energy E is always				
(2) Each dynamical variable in quantum mechanics is represented by (3) The kinetic energy of one dimensional harmonic oscillator					
	(4) The expectation value of self-adjoint operator is always Identify true or false				
	(5) For energy E > 0, the particle has a positive kinetic energy.				
	(6) Energy momentum relation is given by $E = \frac{P^2}{2m}$				
	(7)For a square well any particle with energy $E < 0$ cannot enter in the region I and III				
	(8) Theenergy levels are equispaced for rigid rotator				
0 1	A building	ton of following suppl	tion	[20]	
Q-3	-	ten of following quest	uon.	[20]	
	(1)State de Brogli		conveye acuation for	a free particle	
	• •	(2)Write the three-dimensional Schrodinger wave equation for a free particle.(3) Describe normalizable wave function in brief.			
	()		n m onet.		
	(4) Define square	won potential.		P. T.O.	
				1.1.0.	

- (5) Write down expression of potential energy of square well potential for its different region.
- (6) Define degeneracy of eigen values.
- (7) Explain adjoint operator and self-adjoint operator.
- (8) Write the expression of operator L2 in spherical polar co-ordinate.
- (9)Draw energy level diagram of simple barmonic oscillator.
- (10) Show that $[L_x, L^2] = 0$
- (11) Write down expression for potential energy of simple Harmonic oscillator.
- (12) Write down component of angular momentum in Cartesian co ordinates.
- Q-4 Answer the following questions. (Attempt any four) [32]
 - (1) Obtain one dimensional Schrodinger wave equation for a free particle.
 - (2) Discuss Ehrenfest's theorem in detail.
 - (3) Obtain an expression of energy eigen value for a particle in square well potential using admissible solution.
 - (4) Obtain an expression of energy eigen function for a particle in square well potential using admissible solution.
 - (5) Discussuncertainty principle for quantum mechanical observableand show that product of uncertainty in observables is of the order of commutator
- (6)Show that any two eigen functions belongs to distinct (unequal) eigen values of self adjoint operator are mutually orthogonal. (7) Obtain dimensionless Schrodinger equation for a simple harmonic oscillator as;

$$\frac{d^2u}{d\rho^2} + [\lambda - \rho^2]u = 0$$

Write down an expression for its energy eigen values.

(8) Derive radial Schrodinger wave equation for motion of a particle central force field.