

SARDAR PATEL UNIVERSITY (B.Sc. Sem. 6 Examination) MATHEMATICS - US06CMTH24

Riemann Integration & Series of Functions

27th June 2022, Monday

Time:	10	:00	TO	12	:00	p.m.
-------	----	-----	----	----	-----	------

Maximum Marks: 70

Note: Figures to the right indicates the full marks.

Q.1	Answer the following by selecting the correct choice from the given options.	[10]
1	If $P^* = P_1 \cup P_2$ then P^* isthan P_1 .	
-	(a)finer (b) union (c) intersection (d) refinement	
2	If P*is a refinement of P, then for a bounded function f, $L(P^*, f)$ $L(P, f)$	
	(a) $<$ (b) \leq (c) $>$ (d) \geq	
3	$\inf(U(P,f)) = \underline{\hspace{1cm}}$	
	(a) $\int_a^{\overline{b}} f \ dx$ (b) $\int_{\underline{a}}^b f \ dx$ (c) $\int_a^b f \ dx$ (d) none of these	
4	$\sum_{i=1}^{n} f(t_i) \Delta x_i = \underline{\qquad \qquad }$ (a) $U(P, f)$ (b) $L(P, f)$ (c) $S(P, f)$ (d) none of these	
	(a) $U(P,f)$ (b) $L(P,f)$ (c) $S(P,f)$ (d) none of these	
5	A bounded function f , having anumber of points of discontinuity on $[a,b]$	
	is integrable on $[a, b]$	
٠.	(a) infinite (b) finite (c) no (d) only one	
	$f \in \mathbb{R} \Rightarrow \lim_{\mu(P) \to 0} S(P, f) $	
	(a) $< \varepsilon$ (b) $> \varepsilon$ (c) does not exist (d) exists	
7	If f and g be two positive functions in $[a,b]$ such that $\lim_{x\to a^+} \frac{f(x)}{g(x)} = l$ then	
	$\int_a^b f \ dx$ and $\int_a^b g \ dx$ converge and diverge together at a if $l = \underline{\hspace{1cm}}$.	
	(a)1 (b)0 (c) $+\infty$ (d) $-\infty$	
8	The improper integral $\int_a^b \frac{dx}{(x-a)^n}$ converges iff	
9	(a) $n \le 1$ (b) $n \le 0$ (c) $n < 1$ (d) $n < 0$	
,	The series $\sum \frac{1}{2n^{\frac{1}{2}(p+q)}}$ converges for $p+q$ 2.	
	$(a) \ge \qquad (b) > \qquad (c) \le \qquad (d) <$	
10	The series $\sum \frac{\alpha}{n^p}$ ($\alpha \geq 0$) converges for p 1.	
	$(a) \ge (b) > (c) \le (d) <$	
Q.2	Answer the following.(True/False)	[80]
1	$\int_a^b f \ dx$ exists, implies that function f is unbounded and integrable over $[a,b]$	
2	If $P^* \supset P$ then P^* is refinement of P	
3	For a function f , $\lim_{\mu(P)\to 0} S(P,f) = \int_a^b f \ dx$	
4.	If a function f is monotonic on [a, h] then it is integrable on [a, h]	

- 5 Every absolutely convergent integral is convergent.
- $\int_0^\infty \frac{\sin^2 x}{x^2} dx$ is convergent.
- 7 The series $\sum (-1)^n \frac{x^2+n}{n^2}$ converges uniformly in every interval
- 8 The series $\sum (-1)^n \frac{x^2+n}{n^2}$ converges absolutely for any value of x in [a,b]

Q.3 Answer ANY TEN of the following.

[20]

- 1 In usual notations prove that, $m(b-a) \le L(P,f) \le U(P,f) \le M(b-a)$
- 2 State second form of Darboux's theorem.
- 3 Define: Upper sum
- 4 State first fundamental theorem of integral calculus
- 5 Evaluate $\int_0^2 [x] dx$
- 6 State Generalised First Mean Value theorem.
- 7 Examine the convergence of $\int_0^1 \frac{dx}{\sqrt{1-x}}$
- Test the convergence of $\int_0^{\frac{\pi}{2}} \frac{\sin x}{x^p}$
- Examine the convergence of $\int_2^\infty \frac{2x^2 dx}{x^4 1}$
- Show that $\sum \frac{a_n}{n^x}$ converges uniformly in [0,1] if $\sum a_n$ converges.
- Prove that the series $\sum \frac{(-1)^n}{n} |x|^n$ is uniformly convergent in $-1 \le x \le 1$
- 12 Define: Uniform convergence of a sequence of functions on an interval.

Q-4 Answer ANY FOUR of the following.

(32)

- Show that (3x + 1) is integrable over [0,1] and $\int_0^1 (3x + 1) dx = \frac{5}{2}$
- 2 State and prove Darboux's theorem
- Show that a function f is integrable over [a,b] iff for $\varepsilon > 0 \ \exists \ \delta > 0 \ \exists \ iff \ P,P'$ are any two partitions of [a,b] with mesh less than δ , then $|S(P,f) S(P',f)| < \varepsilon$
- 4 Prove that every continuous function is integrable.
- Show that $\int_0^1 x^{m-1} (1-x)^{n-1} dx$ exists if and only if m, n are both positive.
- Show that the integral $\int_0^{\frac{\pi}{2}} \log \sin x \, dx$ is convergent and hence evaluate it.
- 7 Prove that the limit of integrals is not equal to the integral of the limit.
- 8 State and prove Cauchy's criterion for uniform convergence of a sequence of functions.

