

No of printed page: 2

SARDAR PATEL UNIVERSITY B.Sc.(SEMESTER - VI) EXAMINATION - 2022 Thursday, 23 19722022 MATHEMATICS: US06CMTH21 (Complex Analysis)

$\Gamma { m ime}$:	Q	:00	Q.m.	to	2:00	p.m.
-------------------	---	---	-----	------	----	------	------

Maximum Marks: 70

Que.1 Fill in the blanks.

 $\{10\}$

- (1) Domain of $f(z) = \frac{z}{z \overline{z}}$ is $\{z \in \mathbb{C} /\dots\}$
 - (a) $Imz \neq 0$ (b) $Rez \neq 0$ (c) Imz = 0 (d) $Rez \neq 1$
- (2) $\lim_{z \to \infty} f(z) = w_0$ iff $= w_0$
 - $\lim_{z \to \infty} \frac{1}{f(z)} \quad \text{(b)} \quad \lim_{z \to 0} \frac{1}{f(z)} \quad \text{(c)} \quad \lim_{z \to 0} f\left(\frac{1}{z}\right) \quad \text{(d)} \quad \lim_{z \to 0} \frac{1}{z}$
- (3) Cartesian form of $f(z) = \bar{z}^2 + 2iz$ is f(z):
 - (a) $x^2 y^2 2y + i2x(1-y)$ (b) $(x^2 + y^2 2y) + i2x(1-y)$
 - (c) $(x^2 + y^2 + 2y) + i2x(1-y)$ (d) $x^2 y^2 2y i2x(1-y)$
- (4) Singular point of $f(z) = \frac{z^3 + 4}{(z^2 + 3)(z^2 + 1)}$ are $z = \dots$
 - (a) $\sqrt{3}$, i (b) $\pm\sqrt{3}$ (c) $\pm\sqrt{3}$, $\pm i$ (d) $\pm\sqrt{3}i$, $\pm i$
- (5) If $u(x,y) = y^3 3x^2y$ then
 - (a) $u_{xx} + u_{yy} = 0$ (b) $u_{xx} + u_{xy} = 0$ (c) $u_{xx} + u_{yy} = 1$ (d) none of these
- (6) $\overline{exp(iz)} = exp(i\bar{z})$ iff $z = \dots, n \in \mathbb{Z}$.
 - (a) $2n\pi i$ (b) $2n\pi$ (c) $n\pi$ (d) $(2n+1)\pi$
- (7) if e^z is purely imaginary then $Imz = \dots, n \in \mathbb{Z}$.
 - (a) $(2n+1)\pi$ (b) $2n\pi$ (c) π (d) $(2n+1)\pi/2$
- (8) $i \sin iy = \dots$
 - (a) $-\sinh y$ (b) $i\sinh y$ (c) $-i\sinh y$ (d)
- (9) Image of x > 0 under the transformation w = (1+i)z is
 - (a) u < v (b) v < u (c) u < -v (d) u > -v
- (10) Fixed point of $w = \frac{z-1}{z+1}$ are
 - $\pm i$ (b) i (c) -1 (d) 3

Que.2 Write TRUE or FALSE.

8

- (1) $f(z) = |z|^2$ is not differentiable at z = 1.
- (2) $\lim_{z \to \infty} f(z) = \infty$ iff $\lim_{z \to z_0} \frac{1}{f(z)} = 0$ (3) Singular point of $f(z) = \frac{2z}{z(z^2 + 1)}$ are z = 0, $\pm i$

- (4) If C-R equations are not satisfied at z_0 then f(z) is differentiable at z_0 .
- (5) $exp(z+\pi i)=e^z$.
- (6) e^z is periodic function with period $2n\pi i$, $n \in \mathbb{Z}$
- (7) The image of line $x=c_1$, $c_1 \neq 0$ under the transformation w=1/z is circle .
- (8) If $T(z) = \frac{az+b}{cz+d}$, $(ad-bc \neq 0)$. Then $\lim_{z\to\infty} T(z) = c/a$, if $c\neq 0$.

Que.3 Attempt the following (Any TEN)

[20]

- (1) Express $f(z) = (x^3 3xy^2 + x + 1) + i(3x^2y + y y^3)$ in terms of z and simplify the result, where z = x + iy.
- (2) Evaluate $\lim_{z \to 0} \frac{\bar{z}^2}{z}$.
- (3) Prove that every polynomial is differentiable at each point.
- (4) Define Analytic function and Singular point.
- (5) Check that $f(z) = \sin x \cosh y + i \cos x \sinh y$ is entire or not.
- (6) Prove that f(z) = xy + iy is nowhere analytic.
- (7) Prove that $e^{-y} \sin x$ and $-e^{-y} \cos x$ are harmonic at each point of domain of xy-plane.
- (8) Prove that $\frac{e^{z_1}}{e^{z^2}} = e^{z_1 z_2} \quad \forall \quad z_1, z_2 \in \mathbb{C}.$
- (9) Prove that $Log(-ei) = 1 \frac{\pi}{2}i$.
- (10) Find $\frac{d}{dz}(\operatorname{sech} z)$.
- (11) Prove that w = z + B, where B is complex constant, gives a translation by means of vectors representing B.
- (12) Find image of x > 1, 0 < y under the transformation w = 1/z. Also sketch the region.

Que.4 Attempt the following (Any FOUR)

32

- (1) Prove that $f(z) = |z|^2$ is differentiable only at z=0. Also prove that f'(0) = 0
- (2) If f and g are differentiable then prove that f/g is differentiable and $\left(\frac{f}{g}\right)'(z) = \frac{g(z)f'(z) f(z)g'(z)}{g(z)^2}$, if $g(z) \neq 0$.
- (3) Let f(z) = u(x, y) + iv(x, y) and f'(z) exist at $z_0 = x_0 + iy_0$. Prove that the first order partial derivatives of u and v must exist at (x_0, y_0) and they satisfies the Cauchy-Reimann equations $u_x = v_y$; $u_y = -v_x$ at (x_0, y_0) . Also prove that $f'(z) = u_x + iv_x$ where u_x and v_x are evaluated at (x_0, y_0) .
- (4) Prove that $u(x,y) = x^2 y^2$ is harmonic in some domain and find a harmonic conjugate v(x,y) for u(x,y). Also find corresponding analytic function f(z).
- (5) Prove that $sin^{-1}z = -ilog[iz + \sqrt{1-z^2}]$. Also using it find $sin^{-1}(-i)$
- (6) Find all roots of coshz = 1/2. Also Prove that $Log(-1+i) = \frac{1}{2}ln2 + 3\frac{\pi}{4}i$.
- (7) Prove that composition of linear fractional transformation is also linear fractional transformation
- (8) Discuss the image of w=(i+1)z+2 . Hence sketch the rectangle $1 \le x \le 2$, $1 \le y \le 4$ and its image.