[31]

Sardar Patel University, Vallabh Vidyanagar

Subje	B.Sc Semester-VI : Examinations : 2022-23 [NC] ect : Mathematics
Date:	Topology 25/06/2022, Saturday Timing: 10.00 am - 12.00 pm
Instru	ction: The symbols used in the paper have their usual meaning, unless specified.
Q: 1.	Answer the following by choosing correct answers from given choices.
[1]	The discrete topology on a non-empty set X is its indiscrete topology [A] coarser than [B] finer than [C] not comparable with [D] none
[2]	The discrete topology of a nonempty set is any other topology on that set. [A] coarser than [B] finer than [C] non-comparable with [D] none
[3]	Any topology on a non-empty set is the discrete topology on that set [A] coarser than [B] finer than [C] non-comparable with [D] none
[4]	If A is a dense subset of a topological space (X, \mathcal{T}) then [A] $A' = X$ [B] $A = X$ [C] $A^- = X$ [D] none
[5]	Minimum number of open as well as closed subsets in a topological space is [A] 0 [B] 1 [C] 2 [D] 3
[6]	If A is a closed set in a topological space then [A] $A \subset A'$ [B] $A^- \neq A$ [C] $A = A'$ [D] $A' \subset A$
[7]	Every non-empty and bounded above subset of R posseses [A] the g.l.b. in R [C] g.l.b. and l.u.b. in R [D] none
[8]	If I is an open interval then the subspace (I, \mathcal{U}_I) and (R, \mathcal{U}) [A] both are compact [B] are homeomorphic [C] both are bounded [D] none
[9]	In a T_1 space the complement of every singleton set is [A] closed [B] open [C] closed and open both [D] neither open not closed
. [10]	In the relativized topology of \mathcal{U} -topology of \mathbb{R} the subset [1, 10] is [A] Compact [B] Disconneceted [C] Unbounded [D] none
): 2. ·	In the following, depending on the type of question either fill in the blank or answe whether a statement is true false
[1	If (X,T) is a topological space then every subset of X is a closed set(True/False?)
[2	A closed set cannot be a neighbourhood of any of its points? (True/False?)

- [3] In (R, \mathcal{U}) the set of irrationals is dense. (True/False?)
- [4] A set is always a subset of its closure (True/False?)
- [5] Let f be a function from a topological space (X, T) into another topological space (Y, V) such that $A \subset X$ is connected but f(A) is not connected in Y. Then f is not continuous on X. (True/False).
- [6] In a (R, \mathcal{U}) the subspaces (0, 1) and (0, 100) are homeomorphic (True/False).
- [7] A T_1 space is a Housdorff space. (true/False?)
- [8] T_1 Space and Regular spaces are same.(True/False?)
- Q: 3. Answer ANY TEN of the following.
 - [1] If $X = \{a, b, c\}$ then find three topologies \mathcal{T}_1 , \mathcal{T}_2 and \mathcal{T}_3 for X such that $\mathcal{T}_1 \subsetneq \mathcal{T}_2 \subsetneq \mathcal{T}_3$
 - [2] Define: (i) Usual Topology of \mathbb{R} (ii) Coarser Topology
 - [3] Define: (i) Closed Set (ii) Non-comparable topologies
 - [4] Define: Homeomorphism
 - [5] For any topologies \mathcal{T} and Ψ of \mathbb{R} show that the mapping $f: \mathbb{R} \to \mathbb{R}$ where $f(x) = 2, \forall x \in \mathbb{R}$, is $\mathcal{T} \Psi$ continuous
 - [6] Find \mathcal{U} -closures of the sets \mathbb{R} and \emptyset .
 - [7] Define: Hausdorff Space
 - [8] For $X = \{0, 1, 2, 3, 4, 5\}$ consider the topology $\mathcal{T} = \{X, \emptyset, \{0, 1, 2\}, \{3, 4, 5\}\}$. Is (X, T) connected?
 - [9] State the Least Upper Bound property of R
 - [10] Define: (i) T_3 -space (ii) Metric Topology
 - [11] Prove that the space (R, \mathcal{U}) is a T_2 -space.
 - [12] Prove that every metric space is a Hausdorff space
- Q: 4. Attempt any FOUR of the following.
 - [1] Let J be the set of all integers and \mathcal{J} be a collection of subsets G of J where $G \in \mathcal{J}$ whenever $G = \emptyset$ or $G \neq \emptyset$ and $p, p \pm 2, p \pm 4, ..., p \pm 2n, ...$ belong to G whenever $p \in G$. Prove that \mathcal{J} is a topology for J
 - [2] If (X, \mathcal{T}) is a topological space and $\{F_{\alpha}/\alpha \in \Lambda\}$ is any collection of \mathcal{T} -closed subsets of X then prove that $\bigcap \{F_{\alpha}/\alpha \in \Lambda\}$ is a \mathcal{T} -closed set
 - [3] Let (X, \mathcal{T}) and (Y, Ψ) be topological spaces and f be a mapping from X into Y. Prove that if $f(A^-) \subset f(A)^-$ for $A \subset X$, then the inverse image of f of every Ψ -closed set is \mathcal{T} -closed set.

20

32

- [4] Let (X, \mathcal{T}) be a topological space and $A \subset X$. Prove the following
 - (i) $Int(A) \subset A$
 - (ii) Int(A) is a \mathcal{T} -open set
 - (iii) A is \mathcal{T} -open iff Int(A) = A
 - (iv) Int(A) is the largest open subset of A
- [5] Prove that the space (R, \mathcal{U}) is connected.
- [6] Prove that if (X, \mathcal{T}) is disconnected then there is a nonempty proper subset of X that is both \mathcal{T} -open and \mathcal{T} -closed.
- [7] Prove that every T_3 -space is a T_2 -space
- [8] If Y is a bounded and \mathcal{U} -closed subset of R, then prove that (Y, \mathcal{U}_Y) is compact.

~~ × ~~

• The state of the s