

Eq. (2) SARDAR PATEL UNIVERSITY Bachelor of Science (Semester 5) Examination – 2022 US05CPHY22: Mathematical Methods Date: $11/11/2022$ Friday Time: $10:00$ am to $1:00$ pm Total: 70 Marks NOTE: 1. Figure to the right indicate full marks of the questions. 2. The symbols have their usual meaning. Q-1 Multiple Choice Questions (1) In equation: $ds^2 = h_1^2 du^2 + h_2^2 dv^2 + h_3^2 dw^2$; $h_1, h_2 \otimes h_3$ are called	Seat No	0.:		No. of Printed Pages	: 2		
Bachelor of Science (Semester 5) Examination – 2022 US05CPHY22: Mathematical Methods Date: 11/11/2022 Friday Time: 10:00 am to 1:00 pm Total: 70 Marks NOTE: 1. Figure to the right indicate full marks of the questions. 2. The symbols have their usual meaning. Q-1 Multiple Choice Questions (1) In equation: $ds^2 = h_1^2 du^2 + h_2^2 dv^2 + h_3^2 dw^2$; $h_1, h_2 \otimes h_3$ are called	TENEST AND THE VENEST PROPERTY OF						
US05CPHY22: Mathematical Methods Date: 11/11/2022 Friday Time: 10:00 am to 1:00 pm Total: 70 Marks NOTE: 1. Figure to the right indicate full marks of the questions. 2. The symbols have their usual meaning. Q-1 Multiple Choice Questions (1) In equation: $ds^2 = h_1^2 du^2 + h_2^2 dv^2 + h_3^2 dw^2$; $h_1, h_2 \otimes h_3$ are called							
Date: $11/11/2022$ Friday Time: $10:00$ am to $1:00$ pm Total: 70 Marks NOTE: 1. Figure to the right indicate full marks of the questions. 2. The symbols have their usual meaning. Q-1 Multiple Choice Questions (1) In equation: $ds^2 = h_1^2 du^2 + h_2^2 dv^2 + h_3^2 dw^2$; $h_1, h_2 \otimes h_3$ are called (a) Miller indices (b) Metrical coefficients (c) Complex numbers (d) Binary numbers (2) ∇^2 is called (a) Curl (b) Gradient (c) Laplacian (d) Divergence (3) $\Gamma(n+1) =$ (a) $n \Gamma(n+1)$ (c) $(n-1)\Gamma(n-1)$ (d) $n\Gamma(n+1)$ (c) $(n-1)\Gamma(n-1)$ (d) $n\Gamma(n+1)$ (for Bessel's equation, condition is true. (a) $k = n$ or $k = n - 1$ (d) $k = n$ or $k = -n - 1$ (5) For Bessel's polynomial, the generating function is given by (a) e^{2x-t^2} (b) e^{2xx-t^2} (c) $e^{\frac{x}{2}(t-\frac{1}{t})}$ (d) $e^{\frac{x}{2}(t^2-1)}$ (6) For a Fourier series of a periodic function $f(t)$ in $[-\infty,\infty]$, coefficients $\beta_n =$ (a) $(a_n + a_{-n})$ (b) $i(a_n + a_{-n})$ (c) $(a_n - a_{-n})$ (d) $i(a_n - a_{-n})$ (7) The amount of heat ΔH crossing an element of surface ΔS in time Δt is given by (a) $\Delta H = K \Delta S $							
Time: 10:00 am to 1:00 pm Total: 70 Marks NOTE: 1. Figure to the right indicate full marks of the questions. 2. The symbols have their usual meaning. Q-1 Multiple Choice Questions (1) In equation: $ds^2 = h_1^2 du^2 + h_2^2 dv^2 + h_3^2 dw^2$; $h_1, h_2 \otimes h_3$ are called (a) Miller indices (b) Metrical coefficients (c) Complex numbers (d) Binary numbers (2) ∇^2 is called (a) Curl (b) Gradient (c) Laplacian (d) Divergence (3) $\Gamma(n+1) =$ (a) $n\Gamma n$ (b) $n\Gamma(n+1)$ (c) $(n-1)\Gamma(n-1)$ (d) $n\Gamma(n-1)$ (4) For Bessel's equation, condition is true. (a) $k = n$ or $k = -n$ (b) $k = 1$ or $k = -1$ (c) $k = n$ or $k = n - 1$ (d) $k = n$ or $k = -n - 1$ (5) For Bessel's polynomial, the generating function is given by (a) e^{2x-t^2} (b) e^{2xx-t^2} (c) $e^{\frac{x}{2}(t-\frac{1}{t})}$ (d) $e^{\frac{x}{2}(t^2-1)}$ (6) For a Fourier series of a periodic function $f(t)$ in $[-\infty, \infty]$, coefficients $\beta_n =$ (a) $(a_n + a_{-n})$ (b) $i(a_n + a_{-n})$ (c) $(a_n - a_{-n})$ (d) $i(a_n - a_{-n})$ (7) The amount of heat ΔH crossing an element of surface ΔS in time Δt is given by (a) $\Delta H = K \Delta S$ $\frac{ du }{dt}$ (b) $\Delta H = K \Delta S \Delta t$ $\frac{ du }{ dt }$ (c) $\Delta H = K \Delta t$ $\frac{ du }{ dt }$ (d) None of these							
NOTE: 1. Figure to the right indicate full marks of the questions. 2. The symbols have their usual meaning. Q-1 Multiple Choice Questions (a) In equation: $ds^2 = h_1^2 du^2 + h_2^2 dv^2 + h_3^2 dw^2$; $h_1, h_2 \otimes h_3$ are called (a) Miller indices (b) Metrical coefficients (c) Complex numbers (d) Binary numbers (2) ∇^2 is called (a) Curl (b) Gradient (c) Laplacian (d) Divergence (3) $\Gamma(n+1) = $ (b) $n\Gamma(n+1)$ (c) $(n-1)\Gamma(n-1)$ (d) $n\Gamma(n-1)$ (4) For Bessel's equation, condition is true. (a) $k = n$ or $k = -n$ (b) $k = 1$ or $k = -1$ (c) $k = n$ or $k = n - 1$ (d) $k = n$ or $k = -n - 1$ (5) For Bessel's polynomial, the generating function is given by (a) e^{2x-t^2} (b) e^{2tx-t^2} (c) $e^{x}_2(t^2-t)$ (6) For a Fourier series of a periodic function $f(t)$ in $[-\infty, \infty]$, coefficients $\beta_n = $ (a) $(a_n + a_{-n})$ (b) $i(a_n + a_{-n})$ (c) $(a_n - a_{-n})$ (d) $i(a_n - a_{-n})$ (7) The amount of heat ΔH crossing an element of surface ΔS in time Δt is given by (a) $\Delta H = K \Delta S$ $\frac{ du }{dt}$ (b) $\Delta H = K \Delta S \Delta t$ $\frac{ du }{dt}$ (c) $\Delta H = K \Delta t$ $\frac{ du }{dt}$ (d) None of these	Tinhal 70 Martin						
1. Figure to the right indicate full marks of the questions. 2. The symbols have their usual meaning. [10] (1) In equation: $ds^2 = h_1^2 du^2 + h_2^2 dv^2 + h_3^2 dw^2$; $h_1, h_2 \otimes h_3$ are called (a) Miller indices	Time:	10:00 am to 1:00 pm		Total: 70	Marks		
1. Figure to the right indicate full marks of the questions. 2. The symbols have their usual meaning. [10] (1) In equation: $ds^2 = h_1^2 du^2 + h_2^2 dv^2 + h_3^2 dw^2$; $h_1, h_2 \otimes h_3$ are called (a) Miller indices	NOTE.						
2. The symbols have their usual meaning. Q-1 Multiple Choice Questions (1) In equation: $ds^2 = h_1^2 du^2 + h_2^2 dv^2 + h_3^2 dw^2$; $h_1, h_2 \otimes h_3$ are called (a) Miller indices	1.	Figure to the right indicate full marks of the	questio	ns.			
Q-1 Multiple Choice Questions (1) In equation: $ds^2 = h_1^2 du^2 + h_2^2 dv^2 + h_3^2 dw^2$; $h_1, h_2 \& h_3$ are called (a) Miller indices (b) Metrical coefficients (c) Complex numbers (d) Binary numbers (2) ∇^2 is called (a) Curl (b) Gradient (c) Laplacian (d) Divergence (3) $\Gamma(n+1) = $ (a) $n\Gamma n$ (b) $n\Gamma(n+1)$ (c) $(n-1)\Gamma(n-1)$ (d) $n\Gamma(n-1)$ (4) For Bessel's equation, condition is true. (a) $k = n$ or $k = -n$ (b) $k = 1$ or $k = -1$ (c) $k = n$ or $k = n - 1$ (d) $k = n$ or $k = -n - 1$ (5) For Bessel's polynomial, the generating function is given by (a) e^{2x-t^2} (b) e^{2tx-t^2} (c) $e^{x}_2(t-\frac{1}{t})$ (d) $e^{x}_2(t^2-1)$ (6) For a Fourier series of a periodic function $f(t)$ in $[-\infty,\infty]$, coefficients $\beta_n = $ (a) $(a_n + a_{-n})$ (b) $i(a_n + a_{-n})$ (c) $(a_n - a_{-n})$ (d) $i(a_n - a_{-n})$ (7) The amount of heat ΔH crossing an element of surface ΔS in time Δt is given by (a) $\Delta H = K \Delta S$ $\left \frac{du}{dt} \right $ (b) $\Delta H = K \Delta S \Delta t$ $\left \frac{du}{dt} \right $ (c) $\Delta H = K \Delta t$ $\left \frac{du}{dt} \right $ (d) None of these				·			
(1) In equation: $ds^2 = h_1^2 du^2 + h_2^2 dv^2 + h_3^2 dw^2$; $h_1, h_2 \& h_3$ are called (a) Miller indices		•		•	54.07		
(a) Miller indices (b) Metrical coefficients (c) Complex numbers (d) Binary numbers (2) ∇^2 is called (a) Curl (b) Gradient (c) Laplacian (d) Divergence (3) $\Gamma(n+1) =$ (a) $n\Gamma n$ (b) $n\Gamma(n+1)$ (c) $(n-1)\Gamma(n-1)$ (d) $n\Gamma(n-1)$ (4) For Bessel's equation, condition (a) $k = n$ or $k = -n$ (b) $k = 1$ or $k = -1$ (c) $k = n$ or $k = n - 1$ (d) $k = n$ or $k = -n - 1$ (5) For Bessel's polynomial, the generating function is given by (a) e^{2x-t^2} (b) e^{2tx-t^2} (c) $e^{x}_2(t-t)$ (d) $e^{x}_2(t-t)$ (e) For a Fourier series of a periodic function $f(t)$ in $[-\infty, \infty]$, coefficients $\beta_n =$ (a) $(a_n + a_{-n})$ (b) $i(a_n + a_{-n})$ (c) $(a_n - a_{-n})$ (d) $i(a_n - a_{-n})$ (f) The amount of heat ΔH crossing an element of surface ΔS in time Δt is given by (a) $\Delta H = K \Delta S \begin{vmatrix} du \\ dt \end{vmatrix}$ (b) $\Delta H = K \Delta S \Delta t \begin{vmatrix} du \\ dt \end{vmatrix}$ (c) $\Delta H = K \Delta t \begin{vmatrix} du \\ dt \end{vmatrix}$ (d) None of these (8) $y = ax^2 + bx + c$ is the equation of	Q-1	Multiple Choice Questions	0 - 0 4	7	[10]		
(c) Complex numbers (d) Binary numbers (2) ∇^2 is called	(1)		3dw"; h	$h_1, h_2 \& h_3$ are called			
(2) ∇^2 is called							
(a) Curl (b) Gradient (c) Laplacian (d) Divergence (3) $\Gamma(n+1) = \underline{\hspace{1cm}}$ (a) $n\Gamma n$ (b) $n\Gamma(n+1)$ (c) $(n-1)\Gamma(n-1)$ (d) $n\Gamma(n-1)$ (4) For Bessel's equation, condition $\underline{\hspace{1cm}}$ is true. (a) $k = n$ or $k = -n$ (b) $k = 1$ or $k = -1$ (c) $k = n$ or $k = n - 1$ (d) $k = n$ or $k = -n - 1$ (5) For Bessel's polynomial, the generating function is given by $\underline{\hspace{1cm}}$ (a) e^{2x-t^2} (b) e^{2tx-t^2} (c) $e^{\frac{x}{2}(t-\frac{1}{t})}$ (d) $e^{\frac{x}{2}(t^2-1)}$ (e) For a Fourier series of a periodic function $f(t)$ in $[-\infty, \infty]$, coefficients $\beta_n = \underline{\hspace{1cm}}$ (a) $(a_n + a_{-n})$ (b) $i(a_n + a_{-n})$ (c) $(a_n - a_{-n})$ (d) $i(a_n - a_{-n})$ (7) The amount of heat ΔH crossing an element of surface ΔS in time Δt is given by (a) $\Delta H = K \Delta S \left \frac{du}{dt} \right $ (b) $\Delta H = K \Delta S \Delta t \left \frac{du}{dt} \right $ (c) $\Delta H = K \Delta t \left \frac{du}{dt} \right $ (d) None of these (8) $y = ax^2 + bx + c$ is the equation of $\underline{\hspace{1cm}}$			(a)	Binary numbers			
(c) Laplacian (d) Divergence (3) $\Gamma(n+1) = \underline{\hspace{1cm}}$ (a) $n\Gamma n$ (b) $n\Gamma(n+1)$ (c) $(n-1)\Gamma(n-1)$ (d) $n\Gamma(n-1)$ (4) For Bessel's equation, condition	(2)		(h)	Cuadiant			
(3) $\Gamma(n+1) = $ (b) $n\Gamma(n+1)$ (c) $(n-1)\Gamma(n-1)$ (d) $n\Gamma(n+1)$ (e) $(n-1)\Gamma(n-1)$ (d) $n\Gamma(n-1)$ (e) $(n-1)\Gamma(n-1)$ (for Bessel's equation, condition							
(a) $n\Gamma n$ (b) $n\Gamma(n+1)$ (c) $(n-1)\Gamma(n-1)$ (d) $n\Gamma(n-1)$ (4) For Bessel's equation, condition is true. (a) $k = n$ or $k = -n$ (b) $k = 1$ or $k = -1$ (c) $k = n$ or $k = n-1$ (d) $k = n$ or $k = -n-1$ (5) For Bessel's polynomial, the generating function is given by (a) e^{2x-t^2} (b) e^{2tx-t^2} (c) $e^{\frac{x}{2}(t^2-1)}$ (d) $e^{\frac{x}{2}(t^2-1)}$ (e) For a Fourier series of a periodic function $f(t)$ in $[-\infty, \infty]$, coefficients $\beta_n =$ (a) $(a_n + a_{-n})$ (b) $i(a_n + a_{-n})$ (c) $(a_n - a_{-n})$ (d) $i(a_n - a_{-n})$ (f) The amount of heat ΔH crossing an element of surface ΔS in time Δt is given by (a) $\Delta H = K \Delta S \left \frac{du}{dt} \right $ (b) $\Delta H = K \Delta S \Delta t \left \frac{du}{dt} \right $ (c) $\Delta H = K \Delta t \left \frac{du}{dt} \right $ (d) None of these (8) $y = ax^2 + bx + c$ is the equation of	(2)		(u)	Divergence			
(c) $(n-1)\Gamma(n-1)$ (d) $n\Gamma(n-1)$ (4) For Bessel's equation, condition is true. (a) $k = n$ or $k = -n$ (b) $k = 1$ or $k = -1$ (c) $k = n$ or $k = n - 1$ (d) $k = n$ or $k = -n - 1$ (5) For Bessel's polynomial, the generating function is given by (a) e^{2x-t^2} (b) e^{2tx-t^2} (c) $e^{\frac{x}{2}(t-\frac{1}{t})}$ (d) $e^{\frac{x}{2}(t^2-1)}$ (6) For a Fourier series of a periodic function $f(t)$ in $[-\infty, \infty]$, coefficients $\beta_n =$ (a) $(a_n + a_{-n})$ (b) $i(a_n + a_{-n})$ (c) $(a_n - a_{-n})$ (d) $i(a_n - a_{-n})$ (7) The amount of heat ΔH crossing an element of surface ΔS in time Δt is given by (a) $\Delta H = K \Delta S \left \frac{du}{dt} \right $ (b) $\Delta H = K \Delta S \Delta t \left \frac{du}{dt} \right $ (c) $\Delta H = K \Delta t \left \frac{du}{dt} \right $ (d) None of these	(3)		(h)	$n\Gamma(n+1)$			
(4) For Bessel's equation, condition is true. (a) $k = n$ or $k = -n$ (b) $k = 1$ or $k = -1$ (c) $k = n$ or $k = n - 1$ (d) $k = n$ or $k = -n - 1$ (5) For Bessel's polynomial, the generating function is given by (a) e^{2x-t^2} (b) e^{2tx-t^2} (c) $e^{\frac{x}{2}(t-\frac{1}{t})}$ (d) $e^{\frac{x}{2}(t^2-1)}$ (6) For a Fourier series of a periodic function $f(t)$ in $[-\infty, \infty]$, coefficients $\beta_n = $ (a) $(a_n + a_{-n})$ (b) $i(a_n + a_{-n})$ (c) $(a_n - a_{-n})$ (d) $i(a_n - a_{-n})$ (7) The amount of heat ΔH crossing an element of surface ΔS in time Δt is given by (a) $\Delta H = K \Delta S \left \frac{du}{dt} \right $ (b) $\Delta H = K \Delta S \Delta t \left \frac{du}{dt} \right $ (c) $\Delta H = K \Delta t \left \frac{du}{dt} \right $ (d) None of these (8) $y = ax^2 + bx + c$ is the equation of							
(a) $k = n$ or $k = -n$ (b) $k = 1$ or $k = -1$ (c) $k = n$ or $k = n - 1$ (d) $k = n$ or $k = -n - 1$ (5) For Bessel's polynomial, the generating function is given by (a) e^{2x-t^2} (b) e^{2tx-t^2} (c) $e^{\frac{x}{2}(t-\frac{1}{t})}$ (d) $e^{\frac{x}{2}(t^2-1)}$ (6) For a Fourier series of a periodic function $f(t)$ in $[-\infty, \infty]$, coefficients $\beta_n = $ (a) $(a_n + a_{-n})$ (b) $i(a_n + a_{-n})$ (c) $(a_n - a_{-n})$ (d) $i(a_n - a_{-n})$ (7) The amount of heat ΔH crossing an element of surface ΔS in time Δt is given by (a) $\Delta H = K \Delta S \left \frac{du}{dt} \right $ (b) $\Delta H = K \Delta S \Delta t \left \frac{du}{dt} \right $ (c) $\Delta H = K \Delta t \left \frac{du}{dt} \right $ (d) None of these (8) $y = ax^2 + bx + c$ is the equation of	(43						
(c) $k = n$ or $k = n - 1$ (d) $k = n$ or $k = -n - 1$ (5) For Bessel's polynomial, the generating function is given by (a) e^{2x-t^2} (b) e^{2tx-t^2} (c) $e^{\frac{x}{2}(t-\frac{1}{t})}$ (d) $e^{\frac{x}{2}(t^2-1)}$ (6) For a Fourier series of a periodic function $f(t)$ in $[-\infty, \infty]$, coefficients $\beta_n =$ (a) $(a_n + a_{-n})$ (b) $i(a_n + a_{-n})$ (c) $(a_n - a_{-n})$ (d) $i(a_n - a_{-n})$ (7) The amount of heat ΔH crossing an element of surface ΔS in time Δt is given by (a) $\Delta H = K \Delta S \left \frac{du}{dt} \right $ (b) $\Delta H = K \Delta S \Delta t \left \frac{du}{dt} \right $ (c) $\Delta H = K \Delta t \left \frac{du}{dt} \right $ (d) None of these (8) $y = ax^2 + bx + c$ is the equation of	(*)		(b)	k = 1 or $k = -1$			
(5) For Bessel's polynomial, the generating function is given by (a) e^{2x-t^2} (b) e^{2tx-t^2} (c) $e^{\frac{x}{2}(t^{-1}t)}$ (d) $e^{\frac{x}{2}(t^2-1)}$ (6) For a Fourier series of a periodic function $f(t)$ in $[-\infty, \infty]$, coefficients $\beta_n =$ (a) $(a_n + a_{-n})$ (b) $i(a_n + a_{-n})$ (c) $(a_n - a_{-n})$ (d) $i(a_n - a_{-n})$ (7) The amount of heat ΔH crossing an element of surface ΔS in time Δt is given by (a) $\Delta H = K \Delta S \left \frac{du}{dt} \right $ (b) $\Delta H = K \Delta S \Delta t \left \frac{du}{dt} \right $ (c) $\Delta H = K \Delta t \left \frac{du}{dt} \right $ (d) None of these (8) $y = ax^2 + bx + c$ is the equation of			(d)	k = n or k = -n - 1			
(a) e^{2x-t^2} (b) e^{2tx-t^2} (c) $e^{\frac{x}{2}(t^{-1}t)}$ (d) $e^{\frac{x}{2}(t^2-1)}$ (e) For a Fourier series of a periodic function $f(t)$ in $[-\infty, \infty]$, coefficients $\beta_n = $. (a) $(a_n + a_{-n})$ (b) $i(a_n + a_{-n})$ (c) $(a_n - a_{-n})$ (d) $i(a_n - a_{-n})$ (7) The amount of heat ΔH crossing an element of surface ΔS in time Δt is given by (a) $\Delta H = K \Delta S \left \frac{du}{dt} \right $ (b) $\Delta H = K \Delta S \Delta t \left \frac{du}{dt} \right $ (c) $\Delta H = K \Delta t \left \frac{du}{dt} \right $ (d) None of these (8) $y = ax^2 + bx + c$ is the equation of	(5)		g functi	on is given by			
(c) $e^{\frac{x}{2}(t-\frac{1}{t})}$ (d) $e^{\frac{x}{2}(t^2-1)}$ (6) For a Fourier series of a periodic function $f(t)$ in $[-\infty, \infty]$, coefficients $\beta_n =$ (a) $(a_n + a_{-n})$ (b) $i(a_n + a_{-n})$ (c) $(a_n - a_{-n})$ (d) $i(a_n - a_{-n})$ (7) The amount of heat ΔH crossing an element of surface ΔS in time Δt is given by (a) $\Delta H = K \Delta S \left \frac{du}{dt} \right $ (b) $\Delta H = K \Delta S \Delta t \left \frac{du}{dt} \right $ (c) $\Delta H = K \Delta t \left \frac{du}{dt} \right $ (d) None of these (8) $y = ax^2 + bx + c$ is the equation of			(b)	e^{2tx-t^2}			
(6) For a Fourier series of a periodic function $f(t)$ in $[-\infty, \infty]$, coefficients $\beta_n = $ (a) $(a_n + a_{-n})$		* · · · · · · · · · · · · · · · · · · ·	(d)	$e^{\frac{x}{2}(t^2-1)}$			
(a) $(a_n + a_{-n})$ (b) $i(a_n + a_{-n})$ (c) $(a_n - a_{-n})$ (d) $i(a_n - a_{-n})$ (7) The amount of heat ΔH crossing an element of surface ΔS in time Δt is given by (a) $\Delta H = K \Delta S \left \frac{du}{dt} \right $ (b) $\Delta H = K \Delta S \Delta t \left \frac{du}{dt} \right $ (c) $\Delta H = K \Delta t \left \frac{du}{dt} \right $ (d) None of these (8) $y = ax^2 + bx + c$ is the equation of	(6)		ion f(t)) in $[-\infty, \infty]$, coefficients $\beta_n = $			
(c) $(a_n - a_{-n})$ (d) $i(a_n - a_{-n})$ (7) The amount of heat ΔH crossing an element of surface ΔS in time Δt is given by (a) $\Delta H = K \Delta S \left \frac{du}{dt} \right $ (b) $\Delta H = K \Delta S \Delta t \left \frac{du}{dt} \right $ (c) $\Delta H = K \Delta t \left \frac{du}{dt} \right $ (d) None of these (8) $y = ax^2 + bx + c$ is the equation of	(")		(b)	$i(a_n + a_{-n})$			
(7) The amount of heat ΔH crossing an element of surface ΔS in time Δt is given by (a) $\Delta H = K \Delta S \left \frac{du}{dt} \right $ (b) $\Delta H = K \Delta S \Delta t \left \frac{du}{dt} \right $ (c) $\Delta H = K \Delta t \left \frac{du}{dt} \right $ (d) None of these (8) $y = ax^2 + bx + c$ is the equation of		(c) $(a_n - a_{-n})$					
(a) $\Delta H = K \Delta S \left \frac{du}{dt} \right $ (b) $\Delta H = K \Delta S \Delta t \left \frac{du}{dt} \right $ (c) $\Delta H = K \Delta t \left \frac{du}{dt} \right $ (d) None of these (8) $y = ax^2 + bx + c$ is the equation of	(7)	The amount of heat ΔH crossing an ele	ement c	If surface ΔS in time Δt is given by			
(8) $y = ax^2 + bx + c$ is the equation of		(a) $\Delta H = K \Delta S \left \frac{du}{dt} \right $	(b)	$\Delta H = K \Delta S \Delta t \left \frac{du}{dt} \right $			
(8) $y = ax^2 + bx + c$ is the equation of		(c) $\Delta u = v \Delta + \begin{vmatrix} av \\ du \end{vmatrix}$					
	*						
(a) Parabola (b) Hyperbola	(8)	$y = ax^2 + bx + c$ is the equation of _		Hyperhola			

(c) Straight Line

(d) Ellipse

The forward difference operator Δ defined as ____

(b) $\Delta y_i = y_i - y_{i+1}$ (d) $\Delta y_i = y_i - y_{i-1}$

(a) $\Delta y_i = y_{i+1} - y_i$ (b) $\Delta y_i = y_i - y_{i+1}$ (c) $\Delta y_i = y_{i-1} - y_i$ (d) $\Delta y_i = y_i - y_{i-1}$ In the Simpson's $\frac{1}{3}$ rule, we have to use two subintervals of _____ width.

(a) Gradually increase

(b) Equal

(c) Gradually decrease

(d) Very large

Short Answer Questions (Attempt TEN out of TWELVE) Q-2

[20]

Define beta function. (1)

(2) Show that $\beta(m, n) = \beta(n, m)$.

Write Laplacian in terms of orthogonal curvilinear co-ordinates. (3)

(4)

Show that $P_n(-\mu) = (-1)^n P_n(\mu)$. Show that $xJ'_n(x) = nJ_n(x) - xJ_{n+1}(x)$. (5)

CP. T. O.)

 (6) Write Hermite's differential equation. (7) Write three-dimensional diffusion equation. (8) Write cosine series for f(x) when 0 ≤ x ≤ π. (Note: derivation is not required) (9) Find a₀ for f(x) = x + x² in the interval -π « x « π. (10) Write the principle of least squares. (11) Define interpolation and extrapolation. (12) Derive an equivalent equation of a straight line for y = ae^{bx}. 	
 Q-3 (A) Prove that the product of sets of two triads of mutually orthogonal vectors are reciprocal to each other. (B) If u = x + 5, v = 2y - 4, w = 3z + 1 show that u, v, w are orthogonal and find ds² and metrical coefficients h₁, h₂, h₃. 	[06] [04]
OR Define orthogonal curvilinear co-ordinates and derive expression of curl in terms of orthogonal curvilinear coordinates. (B) If $x = u v \cos w$, $y = u v \sin w$, $z = \frac{1}{2} (u^2 - v^2)$, find h_1 , h_2 , h_3 and show that $ds^2 = (u^2 + v^2)(du^2 + dv^2) + u^2v^2dw^2$	[06] [04]
 Q-4 (A) State and derive Rodrigue's formula. (B) Show that P_n(μ) is the coefficient of hⁿ in (1 – 2μh + h²)⁻¹/₂. (A) Derive the series solution of Bessel's differential equation in the form of ascending power of x. (B) Using equation: H_n(x) = e^{x²}(-1)ⁿ dⁿ e^{-x²}/dxⁿ, find out H₀(x) and H₁(x). Q-5 (A) Define Fourier series and derive the expression of Fourier series for a periodic function f(x) in the interval (-π, π). (B) Derive one dimensional diffusion equation for one dimensional flow of electricity in a long-insulated cable. 	[06] [04] [06] [04] [06]
 (A) Obtain Fourier series for the expansion of f(x) = x sin x in the interval -π « x « π. (B) Derive one dimensional wave equation by considering a flexible string of length l tightly stretched between two points x = 0 and x = l on X - axis. Q-6 (A) Evaluate f(2.5) using Lagrange's interval the 	[06] [04]
(B) Derive Lagrange's interpolation formula.	[06] 04]
(A) Find the approximate value of $y = \int_0^{\pi} \cos x dx$ using Simpson's 1/3 rule by dividing the range of integration into six equal parts. What is the analytical value of the above integral? (B) Derive Simpson's 1/3 rd rule in composite form	06] 14]
X	•1