## SARDAR PATEL UNIVERSITY

Bachelor of Science (Semester 5) Examination - 2022 US05CMTH24 - Metric Spaces and Topological Spaces

Date: 14/11/2022

Time: 10:00 A.M. To 01:00 P.M.

Total: 70 Marks

## Q-1. Multiple Choice Questions

[10]

(1) Let  $d: R \times R \to R$ . Which of the following is not metric on R.

A. 
$$d(x, y) = |x^2 - y^2|$$

$$B. \quad d(x,y) = |x-y|$$

$$C. \quad d(x,y) = |y-x|$$

B. 
$$d(x,y) = |x - y|$$
  
D.  $d(x,y) = \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$ 

(2) Let  $f: M_1 \to M_2$ .  $(M_1, \rho_1) \& (M_2, \rho_2)$  are metric spaces. If  $f^{-1}(F)$  is closed for all closed subset F of  $M_2$  then

A. f is one-one

B. f is surjective

C. f is monotonic

D. f is continuous

(3) For which of the following set A and  $A^{C}$  both are dense in R?

A. N

C. R

(4) For R with discrete metric, which of the following subset is totally bounded?

A. [3,5]

B. (0,5)

C. {1,2,3}

 $0. \quad \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$ 

(5) Which of the following set is u -open set?

A.  $\{n: n \in Z\}$ 

B.  $\{0, \pm 1, \pm 2\}$ 

C. (-1,1)

D. [-1,1]

(6) Let  $\tau_1 = \{\phi, \{a, d\}, \{a, b, c, d\}\}, \tau_2 = \{\phi, \{a\}, \{d\}, \{a, b, c, d\}\}$ . Then,

A.  $\tau_1$  is finer than  $\tau_2$ 

B.  $\tau_1$  and  $\tau_2$  are not comparable

C.  $au_2$  is finer than  $au_1$ 

D. None

(7) A is  $\tau$  -open set iff

A.  $\vec{A} = A$ 

B. X-A=A

C.  $\bar{A} = A$ 

D. int(A) = A

(8) If there is a non-empty proper subset of X which is both au –open and au –closed then

A. X is compact

- B. X is connected
- C. X is disconnected
- D. None

(9) What is the greatest lower bound of the set  $A = \{x \in \mathbb{R}: -3 < x < 3\}$ ?

C. 0

D. 9

(10) Which of the following set is not compact in usual topology?

B.  $[-10,10] \cup (-1,1)$ 

C.  $(-\infty, \infty)$ 

D. {0}

05

05

05

05

05

05

- (1) Define a Metric and give any one example of metric defined on R<sup>2</sup>. (2) Prove that if  $\rho$  is a metric on X, then  $5\rho$  is also a metric on set X. (3) Define: Open Ball in Metric Space. (4) What is the distance between (1,1) and (1,-1) in  $\mathbb{R}^2$  with metric  $d(x,y) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ ? (5) Give any three topologies on  $X = \{a, b, c, d\}$ . (6) Is the set  $A = \left\{\frac{1}{n} : n \in N\right\}$  closed in R with usual metric? Justify. (7) Prove that constant function is continuous in (R, u). (8) Define: u-open set in Topological Space. (9) Define: Interior point in Topological Space (10) Define: Disconnected Space in Topological Space. (11) Find set of all cluster points of R in discrete topology. (12) Give any one open covering of R which has no finite sub-covering. Let  $\rho: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$  defined by  $\rho(x,y) = \sqrt{\sum_{k=1}^n (x_k - y_k)^2}$ . Where  $x = \sum_{k=1}^n (x_k - y_k)^2$  $(x_1, x_2, ..., x_n)$  and  $y = (y_1, y_2, ..., y_n)$ . Then prove that  $\rho$  is metric on  $\mathbb{R}^n$ . (b) If  $G_1$  and  $G_2$  are open subsets of the metric space M, then prove that  $G_1 \cup G_2$  is also open in M. (a) Let  $\rho: R \times R \to R$  defined by  $\rho(x, y) = |x - y|$ . Then prove that  $\rho$  is metric (b) Prove that the real valued function f is continuous at  $a \in R$  if and only if whenever  $\{x_n\}$  is a sequence of real numbers converging to 'a' then the sequence  $\{f(x_n)\}$  converges to f(a). Q-4 (a) Define Usual topology and prove that it possesses all the conditions to becoming a Topology. (b) Prove that singleton sets and finite sets are closed in R with usual topology.
  - $H = \{x \in R : a \le x < b\}$  such that  $p \in H \subset G$ . Then prove that G is an unusual non-trivial topology of R.

(a) Let G be a family of subsets of R as described by

(i) (ii)

Prove that arbitrary intersection of closed sets is also closed in Topological space. 05

If  $G \subset R \& G \neq \Phi$  then  $G \in G$  if for each  $p \in G$  there is a set

- Q-5 (a) Let  $(X, \tau)$  be a topological space and let A be a subset of X. Prove that A is 05  $\tau$  —open if and only if A contains a  $\tau$  —neighbourhood of each of its points.
  - Let  $(X, \tau)$  be a topological space and let A be a subset of X. A' is the set of all cluster points of A then prove that  $A \cup A'$  is  $\tau$  —closed.

- Prove that Int(A) is largest open subset of A. 05
- Let  $f:(R,\tau)\to (R,\psi)$  defined by  $f(x)=2, \forall x\in R$ . Then prove that f is  $\tau-\psi$
- Q-6 (a) Prove that continuous image of connected space is connected. 05
  - Define relative topology and show that relative topology satisfies all the 05 conditions for becoming a topological space.

OR

- (a) Let  $(X, \tau)$  be a topological space and let  $Y \subset X$ . Prove that if the subspace  $(Y, \tau_Y)$ 05 is connected then the subspace  $(\overline{Y}, \tau_{\overline{Y}})$  is also connected.
- Prove that R with usual topology is not compact space. 05

