## Sardar Patel University, Vallabh Vidyanagar

B.Sc. Examinations: Sem 5 Subject: Mathematics

Max. Marks:70

Date: 11/11/2022 US05CMTH22 [Theory of Real Functions]

Time: 10.00 to 1.00 p. m.

Q.1 Choose the correct option for each of the following.

[10]

- (1) If  $\lim_{x \to a} f(x)$  exists but f(a) is not defined then f is said to have discontinuity of ....
  - (a) first type (b) second type (c) removable type (d) first type from left
- (2) A function is said to be continuous in a region if it is continuous at ...... of the given region.
  - (a) Only one Point (b) Every Point (c) Some Point (d) Nowhere
- (3) f(x) = |x| is ...... at x = 0.
  - (a) discontinuous (b) differentiable (c) not differentiable (d) None of these
- (4) If  $f(x) \le f(y)$ ,  $\forall x \le y$  then the function f is said to be ......
  - (a) increasing (b) decreasing (c) strictly increasing (d) strictly decreasing
- (5)  $1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \dots$
- (b)  $\log (1+x)$
- sinx
- (d) cosx
- (6) Which of the following is Cauchy's form of reminder in the Taylor's theorem
- $R_n = \frac{h^n [1-\theta]^{n-p}}{p[(n-1)!]} f^{(n)}(a+\theta h)$  (b)  $R_n = \frac{h^n [1-\theta]^{n-1}}{[(n-1)!]} f^{(n)}(a+\theta h)$ 
  - $R_n = \frac{h^n}{[n!]} f^{(n)}(a + \theta h)$ (c)
- (d) None of these
- (7) For  $f(x,y) = x^3 xe^y$  then the value of  $f_x(1,0)$  is ......
  - 0 (b) 1 (c)
- (8)  $\lim_{(x,y)\to(4,\pi)} x^2 \sin \frac{y}{x} = \dots$
- 8 (c)
- -8 (d)
- (9) The extreme value of f(a,b) is called maximum if f(x,y) f(a,b) is ......
  - (a) Alternate +ve & -ve
- (b) Positive (c) Negative
- (d) None of these
- (10) A stationary point is called saddle point of function f if it is ...... point
- (a) Extreme
- (b) Non extreme (c) Stationary
- (d) None of these

## Q.2 Attempt any TEN:

[20]

- (1) Define: A continuous function at a point.
- (2) Prove that  $\lim_{x\to 0} x$ .  $\sin\frac{4}{x} = 0$ .
- (3) Prove that the function  $f(x) = \frac{1}{x}$  is not uniformly continuous on (0,1)
- (4) State Rolle's theorem.
- (5) If a function f satisfies the conditions of Lagrange's Mean value theorem and  $f'(x) = 0, \forall x \in (a, b)$  then prove that f(x) is constant on [a, b].
- (6) State Maclaurin's theorem.
- (7) Evaluate:  $\lim_{(x,y)\to(0,0)} \frac{x\sin(x^2+y^2)}{(x^2+y^2)}$
- (8) Define: Repeated limits of a function of two variables.
- (9) Using definition of partial derivatives find  $f_x$  and  $f_y$  of

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = 0 \end{cases}$$

- (10) Define: Extreme Value.
- (11) State necessary condition for a f(x,y) to have an extreme value at a point (a,b).
- (12) Expand  $x^2y + 3y 2$  in powers of x 1 and y + 2

(P. T. O)

- Q.3 (a) Show that a continuous function on a closed interval [a,b] attains its bounds at least once in [a,b] [5]
  - (b) If f and g are two functions defined on some neighbourhood of c such that  $\lim_{x\to c} f(x) = l$ [5] and  $\lim_{x \to c} g(x) = m$ ,  $m \neq 0$  then prove that  $\lim_{x \to c} {f \choose g}(x) = \frac{1}{m}$ .

Q.3 (a) Prove that limit of a function is unique if exists.

[5]

(b) If f is continuous on [a, b] then prove that f is uniformly continuous on [a, b].

[5]

Q.4 (a) State and Prove Darboux's theorem.

[5]

[5]

(b) Prove that  $x - \frac{x^2}{2} < \log(1+x) < x - \frac{x^2}{2(1+x)}$ ,  $\forall x > 0$ .

Q.4 (a) State and Prove Lagrange's mean value theorem.

[5]

(b) Show that  $\frac{tanx}{x} > \frac{x}{sinx}$ ,  $0 < x < \frac{n}{2}$ .

[5]

Q.5 (a) Define: Limit of a function of two variables and by using the definition of limit prove that  $\lim_{(x,y)\to(1,2)}(x^2+2y)=5.$ 

[5]

(b) Prove that  $\lim_{(x,y)\to(0,0)} xy \frac{(x^2-y^2)}{(x^2+y^2)} = 0.$ 

[5]

- Q.5 (a) Prove that f(xy, z 2x) = 0 satisfies the equation  $x \frac{\partial z}{\partial x} y \frac{\partial z}{\partial y} = 2x$  under suitable condition. [5] State these conditionS.
  - (b) Prove that for a given function  $f(x,y) = \begin{cases} x \sin(\frac{1}{y}) + y \sin(\frac{1}{x}), & xy \neq 0 \\ 0, & xy = 0 \end{cases}$ [5] Limit exists at the origin, but the repeated limits do not.
- Q.6 (a) State and Prove Taylor's theorem for two variables.

(b) Investigate the maxima and minima of the function  $f(x,y) = x^3 + y^3 - 63(x+y) + 12xy$ .

[5] [5]

- (a) Prove that the first four terms of the Maclaurin's expansion of  $e^{ax}cosby$  are

[5]

 $1 + ax + \frac{a^2x^2 - b^2y^2}{2!} + \frac{a^3x^3 - 3ab^2y^2}{3!}.$ (b) Prove that  $2x^4 - 3x^2y + y^2$  has neither a maximum nor a minimum at (0,0).

[5]

