Max. Marks:70

[10]

Sardar Patel University Wallabh Vidyanagar

B.Sc. Examinations : Sem 5 Subject : Mathematics

Date: 10/11/2022 US05CMTH21 [Real Analysis] Time : 10.00 to 1.00 Th 4054 (2) Q.1 Choose the correct option for each of the following.

(1) The field which does not have the least upper bound property is										
	(a)	Q	(b)	Z (c)	N	(d) 5	None of these			
(2) The greatest number of a set ,if exists is										
(a) the supremum of the set (b) the infimum of the set (c) not unique (d) None of these										
(3) The smallest number of $\left\{1+\frac{1}{n}/n\in N\right\}$ is										
	(a)	0	(b)	1	(c)	2	(d)	None of t	hese	
(4) Every closed interval in R isset										
	(a) an open (b) a closed (c) open and closed (d) None of these									
(5) The derived set of A ={-2,-1,0,1,2,3} is										
	(a)	Ø	(b)	R	(c)	Α	(d)	Z		
(6) The closure of Q i.e \tilde{Q} is										
	(a)	N	(b)	Q	(c)	Ø	(d)	. R		
(7) The Range of sequence is always										
	(a)	emp	ty (b) infinit	e (c)	non- er	npty (d) None of t	hese	
(8) Sequence $\{(-1)^n / n \in N\}$ is										
(a) convergent (b) divergent (c) oscillates finitely (d) None of these										
(9) A positive term series $\sum \frac{1}{n^p}$ is convergent iff										
	(a) $p=1$ (b) $0 (c) p > 1 (d) p < 0$									
(10) A series $\sum u_n$ is convergent then $\lim_{n \to \infty} u_n$										
	(a)	≠ 0	(b)	= 0	(c)	= 1	(d) do	es not exists	S	
Q.2 A	Q.2 Attempt any TEN: [20]									
	(1) Define : An Ordered Field.									
(2) Prove that the least upper bound of a set S is unique , if it exist.										
(3) Find the g.l.b and l.u.b of $\left\{\frac{1}{m} + \frac{1}{n} / m, n \in N\right\}$ if they exist.										
	(4) Prove that every open intreval is an open set.									
	(5) Define: A closure of a set.									
	(6) De	fine: A lim	it point (of a set .		<u>^</u>		1	(KHA)	
						(1)				
9										

- (7) Define: A convergent sequence.
- (8) Prove that every convergent sequence is bounded.
- (9) Prove that $\lim_{n\to\infty} \frac{3+2\sqrt{n}}{\sqrt{n}} = 2$.
- (10) Define: An infinite series
- (11) Prove that the series $\sum \frac{1}{n!}$ is convergent.
- (12) Investigate the behaviour of the series whose n^{th} term is $\frac{n}{n+1}$
- Q.3 (a) State and Prove the Archimedean property of R $_{\star}$
 - (b) Prove that $\sqrt{6}$ is an irrational number.

OR

- Q.3 (a) Prove that the set of all rationals ${\bf Q}_{\parallel}$ is not an order complete field. [5]
 - (b) If $x, y \in R$ then prove that $|x + y| \le |x| + |y|$. Also prove that $||x| |y|| \le |x y|$. [5]

[5]

[5]

[5] [5]

- Q.4 (a) Prove that a set is closed iff its complement is open . [5]
 - (b) Prove that the arbitrary union of open sets is open . [5]

- Q.4 (a) If S and T are sets of real numbers then prove the following [5]
 - $S \subset T \Rightarrow S' \subset T'$ (ii) $(S \cup T)' = S' \cup T'$
 - (b) Let $S \subset R$ then prove that the interior of S is the largest open subset of S. [5]
- Q.5 (a) State and Prove Bolzano-Weierstrass theorem for sequence. [5]
 - (b) If $\{a_n\}$ and $\{b_n\}$ are two sequences such that (i) $a_n \leq b_n$, $\forall \ n \in N$ [5]
 - (ii) $\lim_{n \to \infty} a_n = a$, $\lim_{n \to \infty} b_n = b$ then prove that $a \le b$.

- (a) State and Prove Cauchy's first theorem on limits.
- [5] (b) Prove that $\lim_{n\to\infty} \sqrt[n]{n} = 1$.
- ີ່ເວັງ
- Q.6 (a) State and Prove comparision test of first type. [5]
 - (b) Prove that the positive term geometric series $1+r+r^2+\cdots$ converges for r<1[5] and diverges to ∞ for $r \ge 1$.

OR

- (a) State and Prove Cauchy's Root Test.
- (b) Prove that the series $\frac{1.2}{3^2A^2} + \frac{3.4}{5^2.6^2} + \frac{5.6}{7^2.8^2} + \dots$ converges.

