

No. of Printed Pages: Z

SEAT No._

[A-2]

SARDAR PATEL UNIVERSITY **SEM IV , MATHEMATICS** Calculus and Algebra-II(US04EMTH05)

Date: 12-10-2022	Time: 12-30 to 2-30

Date: 12-10-2022	Time: 12-30 to 2-30
1. Answer the following by selecting correct choice from the options: [1	
(1) If $x^3 + y^3$, then $f_{xy} = $	
(a) $2x$	(b) 0
(c) 2y	(d) 2
(2) If $AC - B^2 > 0$ and $A < 0$ then	
(a) local minimum and local maximum of f do not exist.	(b) can't say anything
(c) $f(a,b)$ is a local maximum of f	(d) $f(a,b)$ is a local minimum of f
(3) If $f(x, y)$ is sufficiently many times differentiable in same	neighborhood of (a,b)
then $f_{xy}(a,b) = \underline{\hspace{1cm}}$	
(a) A	(b) <i>B</i>
(c) C	(d) none
$(4) grad(\emptyset + f) = \underline{\hspace{1cm}}.$	
(a) gradf	(b) $grad\emptyset + gradf$
(c) gradø	(d) 0
(5) If $f(x,y,z) = x + 2y$, then $\overline{\nabla} f = \underline{\hspace{1cm}}$	
(a) $3\bar{\imath} + 3\bar{\jmath}$	(b) $3\bar{\iota} + 6\bar{\jmath}$
(c) $\bar{\iota} + 2\bar{\jmath}$	(d) $x\bar{\iota} + y\bar{\jmath}$
(6) Curl of V is denoted by	
(a) div V	(b) $\overline{\nabla} \times V$
(c) $\overline{\nabla} \cdot V$	(d) none
$(7) \overline{\nabla} \times (\overline{\nabla} f) = \underline{\hspace{1cm}}$	•
(a) 0	(b) $\bar{0}$
(c) 1	(d) none
(8) If $a \in B$, where B is Boolean algebra, $a + a = $	
(a) 1	(b) 0
(c) a'	(d) a
(9) In Boolean algebra, $1' = \underline{\hspace{1cm}}$ variable	
(a) 1'	(b) 1
(c) 0	(d) none
(10) For every $a, b \in B$, B is Boolean algebra, $a \cdot (a + b) = 1$	
(a) a	(b) 0
(c) 1	(d) <i>b</i>
2. Do as directed.	(8)
1) True/False: A stationary point which is not an extreme p	
2) Fill in the blank: $D_2 f = \underline{\qquad} \left(\frac{\partial f}{\partial x} / \frac{\partial f}{\partial y}\right)$.	
3) True/False: The value of first derivative at point of Mini-	ma is not Ω

- 4) Fill in the blank: Div(curl f) = ____(0/doesn't exist).
- 5) Fill in the blank: In Boolean Algebra, $x + x = \underline{\hspace{1cm}}(x/0)$.
- 6) Fill in the blank: In Boolean Algebra, $(A \cap B)' = \underline{\hspace{1cm}}$
- 7) True/False: In Boolean Algebra, $a \cdot (b+c) = a \cdot b + a \cdot c$
- 8) True/False: $(ab)' = a' \cdot b'$

3. Answer any TEN of the following.

[20]

- 1) Define Stationary point.
- 2) Find Curl of $x\bar{\imath} + y\bar{\jmath} + z\bar{k}$.
- 3) Define local maxima.
- 4) If $f(x, y, z) = x^2 2y^2 + 3z^2$, find $\overline{\nabla} f$ at (3, 4, 5).
- 5) Define: Gradient of a scalar field.
- **6)** Prove that $\overline{\nabla}(fg) = f \overline{\nabla}g + g\overline{\nabla}f$
- 7) If $\bar{V} = xy\hat{\imath} + x^2\hat{\jmath}$ then find Curl \bar{V} .
- 8) Show that $\overline{\nabla} f(r) = f'(r) \nabla r$
- 9) Prove that $\overline{\nabla} \cdot (\overline{v_1} \overline{v_2}) = \overline{\nabla} \cdot \overline{v_1} \overline{\nabla} \cdot \overline{v_2}$
- **10)** Draw network represented by the function (x + y')(x' + y).
- 11) State and prove De-Morgan's law for Boolean Algebra.
- **12)** If a + x = b + x & a + x' = b + x' then prove that a = b.

4. Attempt any FOUR

(32)

- 1) Show that $(y-x)^4 + (x-2)^4$ has minimum at (2, 2).
- 2) Show that the function $2x^4 3x^2y + y^2$ has neither maximum nor minimum at (0, 0).
- 3) Prove that $f(x,y) = tan^{-1} \left(\frac{y}{x}\right)$ is harmonic function.
- **4)** Find direction derivative of $f(x, y, z) = 2x^2 + 3y^2$ at point (2,1,3) in the direction of $\bar{a} = \bar{\imath} 2\bar{k}$.
- 5) If $f(x,y) = log(x^2 + y^2)$ then verify $\nabla^2 f = 0$
- **6)** Prove that $\nabla(r^n\bar{r})=(n+3)r^n$ where $\bar{r}=x\bar{\iota}+y\bar{\jmath}+z\bar{k}$, $=|\bar{r}|$.
- 7) Prove that In every Boolean algebra B each of the binary operations (+) and (·) are associative.
- 8) Simplify following function and draw network represented by the function x + xy'.

~~ × ~~