SEAT	No.
------	-----

No. of Printed Pages: 2

[A-12(A)]

SARDAR PATEL UNIVERSITY (B.Sc. Sem.4 Examination (NC)) MATHEMATICS - US04EMTH05 - Calculus and Algebra - 2

Date: 28-9-2022, Wednesday

Time: 12:30 TO 02:30 p.m.

Maximum Marks: 70

Note: Figures to the right indicates the full marks.

Answer the following by selecting the correct choice from the given **Q.1** options.

[10]

[80]

If _____ then (a, b) is stationary point. 1

$$(A) f_x(a,b) = 0$$
 (B) $f_y(a,b) = 0$ (C) $f_x(a,b) = f_y(a,b) = 0$ (D) None

 $f(x,y) = x^2 + 2y$ then AC-B²_ 2

(A) > 0 & A > 0 (B) < 0 & A > 0 (C) = 0 & A > 0

(D) None

Saddle point is _____ a local extremum of the function. 3

(A) not

5

8

(B) always

(C) sometimes

(D) none of these

 $\nabla f(r) = \underline{\hspace{1cm}}$, for $\bar{r} = xi + yj + zk$. 4

(A) $\nabla f'(r) \nabla r$ (B) $\nabla f(r) \nabla r$ (C) $\nabla f(r) \nabla r'$ (D) none of these $\nabla(f+g) = \underline{\hspace{1cm}}$

(A) $\nabla f - \nabla g$ (B) $\nabla f + \nabla g$ (C) $f(\nabla g) + g(\nabla f)$

(D) none of these

 $\operatorname{curl} \bar{v} = , \text{ for } \bar{v} = xi + 2yj + 3zk.$ 6

(A) 0 (B) 1

(C) 2

(D) 3

If $\vec{r} = xi + 3yj$ then $\nabla \cdot \vec{r} = \underline{\hspace{1cm}}$ 7 (B) 2 (C) 3

In Boolean algebra, a+a·b=___

(D) 4

(D) a+b

(B) b (C) ab 9 In Boolean algebra, a·a=

(A) a^2

(B) a

(C) 1

10 In Boolean algebra, a·0=_

(A) a^2

(B) a

(C) 1

(D) 0

(D) 0

Answer the given statement is TRUE or FALSE Q.2

- There always exist stationary points of function. 1
- 2 Stationary point may not become extreme point.
- 3 Gradient of vector is a scalar quantity.
- 4 $\nabla(f-g) = f(\nabla g) - g(\nabla f)$
- Divergence of vector is a scalar quantity. 5
- 6 Curl of vector is a vector quantity.
- In Boolean algebra, a + a'b = a + b7
- In Boolean algebra, $a \cdot a' = 0$ 8

TP.T.O.J

Q.3	Answer ANY TEN of the following.	[20]
1	State necessary condition for a maximum and minimum of a differentiable	[-~]
	function.	
2	Define: Saddle point	
3	What is extreme value of a function?	
4	Define: Directional derivative of scalar point function	
5	Show that $\nabla(fg) = f(\nabla g) + g(\nabla f)$	
6	Show that $\nabla(f^n) = nf^{n-1}\nabla f$.	
7	Show that $\nabla(\nabla f) = \nabla^2 f$	
8	In usual notation prove that $\nabla \times (\bar{v} + \bar{u}) = \nabla \times \bar{v} + \nabla \times \bar{u}$	
9	In usual notation prove that $\nabla \cdot (\nabla \times \bar{v}) = 0$.	
10	Draw the network represented by $z(x' + yz + y')$.	•
11	For all a in Boolean algebra (B), prove that $(a')' = a$.	
12	In a Boolean algebra B , prove that $a(a'+b)=ab$.	
Q-4	Answer ANY FOUR of the following.	(32)
1	Investigate the maxima and minima of the function	(32)
	$f(x,y) = x^3 + y^3 - 3x - 12y + 20.$	
2	Show that $y^2 + x^2y + x^4$ has a minimum at $(0, 0)$.	
3	Show that the function $f(x,y) = tan^{-1} \left(\frac{y}{x}\right)$ is a harmonic function.	
4	Find unit normal vector to the surface $z^2 = 4(x^2 + y^2)$ at $(1, 2, 3)$.	
5	Verify $\nabla (f \nabla g) = f \nabla^2 g + \nabla f \nabla g$ for $f = x + y + z$, $g = xyz$.	
6	Find curl \bar{v} for $\bar{v} = \frac{\bar{r}}{ \bar{r} ^3}$, where $\bar{r} = xi + yj + zk$.	
7	For all a in Boolean algebra B, inverse is unique.	
8	Find Boolean function for the following circuit. Simplify it and draw simplified circuit.	