

SEAT N	Vo
--------	----

No. of Printed Pages: 3

[2/A-I]

SARDAR PATEL UNIVERSITY

B.Sc. Semester-IV Examination

50442 day, 15th October,2022
Time:-12:30 P.M. to 02:30 P.M. Paper Code:- US04CSTA02
Subject:-Probability Distribution M.Marks:70

	Subject:-Probab	oility Distribution	Lista allowed	
Mata	Subject:-Probab - Simple/Scientific calculators are all	lowed. Statistical Ta	ble is anowed.	[10]
Note:	Multiple Choice Questions: -		ono if	f 1
	m - as afficient of skewness for a pinon	nial distribution will b	(d) n<0	
1				
	() 1)		estions. Each question	
2	A student randomly guesses at each of	ty that the student	gets exactly 4 correct	
	A student randomly guesses at each of has 5 possible choices. The probabili		a (1	
	is (a) 0.115 (b) 0.227	(c) 0.046	(d) None of these	
	(a) 0.115 (b) 0.227	of X then $\mu'_1 = \underline{\hspace{1cm}}$		
3	(a) 0.115 (b) 0.227 If $Mx(t) = (\frac{1}{3} + \frac{2}{3} exp(t))^9$ is the m.g.f. of	(6) 4	(d) 3	
	(a) 6 (b) 5	(c) 4	(-)	
4	If $X \sim N(u, \sigma^2)$ then $(\frac{x-\mu}{\tau})$ has		(D2	
•		(c) χ_1^2	(d) χ_n^2	
	The distribution has all odd	order moments zero.	(1) 1, -4h(h) 8(f)	
5	(a) Chi-square (b) Normal	(c) Student's t	(d) both(b) &(c)	
_	(a) Chi-square (b) Normal If X and Y are two independent exp	onential variates wit	h mean e each, then z	
6			(D mana of these	
		(c) G $(1, \theta)$	(d) none of these	
_	$\sum_{i=1}^{n} (X_i - \overline{X})^2$	ace of a random sam	ple from N(μ , σ^2)then	ì
7	If $S^2 = \frac{\sum_{i=1}^{n-1} (x_i - x_j)}{n-1}$ is the sample varian	ice of a ran-	•	
	(a) G (2, θ) (b) G (2,2 θ) If $S^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}$ is the sample varian $\frac{(n-1)S^2}{\sigma^2} \sim $		C the non	
•	$\frac{\partial^2 x^2}{\partial x^2} \sim \frac{\partial^2 x^2}{\partial x^2}$ (a) χ_n^2 (b) χ_{n-1}^2	(c) χ_1^2	(d) none of these	
	(a) χ_n^2 (b) χ_{n-1}^2 If $X \sim b(n,p)$ distribution then as $n \to \infty$	$(\frac{x-np}{})\sim$,
8	If X~b(n,p) distribution then as n	$\binom{npq}{\sqrt{n}}$ (c) Binomial	(d) none of these	•
	(a) Standard (b) Poisson	(C) Dinomiai		
		amal distribution.	e e	
9	normalis the Median of the standard no	(c) 2	(d) None of these	
	(a) 0 (b) 1 If X~N(0,1) and Y~ χ_r^2 variates and both a	(c) 2	~ distribution.	
10	If X~N(0,1) and Y~ χ_r^2 variates and both a	are independent then y	 -	
		(a) +	(d) χ_r^2	
	(a) F(m, n) (b) (1, 1, 1)	(-) I		[80]
Q.	2 Fill in the blanks: - The area under the normal curve be	z=0 and $z=1$ i	s the area und	er
$\tilde{1}$	The area under the normal curve be	etween z-o and z = -		
2	If Y~E(m n) distribution then the d	istribution of $\frac{1}{x}$ is $\frac{1}{x}$	 •	
3	The mean for the Gamma $G(\alpha, 1)$ dis	Stridunin is		
3 4	and D(-2.25/. 251.18</td <td>•</td> <td></td> <td></td>	•		
4	State whether the statement is Tru	e or False.	egual.	
5	Jaranian CO OF THE DILLU	mial distribution are	cquan	

- The shape of the Normal distribution is not symmetrical.
- 6 If X1 and X2 are two independent N(1,2) and N(2,2) variate then the distribution of Y=X1+X2 follows N(3,4) distributions.
- Let $X\sim U(2,a)$ variate with mean 5. The value of a is 5. 8
- Short Questions: (Attempt any Ten)

[20]

- The mean and standard deviation of binomial distribution are 9 and 2 respectively. Find its parameter.
- If $f(x) = \frac{1}{15}$, x = 1, 2, ... 152

= 0, otherwise is the p.m.f. of X. Find E(X) and E(2X+5).

- Define Binomial distribution. State the condition under which Binomial 3 distribution tends to Poisson distribution.
- If X is uniformly distributed with mean 1 and variance 4/3, find P(X>0). 4
- The length X of a component produced by a machine is a r.v. having the p.d.f, 5
 - f(x) = k(1-x), 0 < x < 1= 0, otherwise

Determine the value of k.

- If $M_{\chi}(t) = (1-2t)^{-1}$, is the m.g.f. o a r.v. X then identify the distribution of X 6 State its mean and variance.
- The m.g.f. of a r.v. X is $M(t) = (0.55 + 0.45e^t)^{-20}$ Find approximate value of 7 $P(3 < x \le 8).$
- If $M_x(t) = e^{25t(1+t)}$ is the m.g.f. of a continuous r.v. X then name the distribution 8 and writes its p.d.f.
- If $X \sim P(64)$ then find P(X=80). State clearly the result you have used to solve the 9
- If $X \sim N(0,1)$ distribution then finds $P(X^2 > 3.84)$. State clearly, the result you have 10 used to solve the probability.
- Define F-distribution. Write the p.d.f. of F(2,2) distribution. 11
- Define Chi-square distribution and Student t-distribution. 12

Long Questions: - (Attempt any four) Q.4.

[32]

- An urn contains 4 white and 3 black balls. If two balls are drawn at random (i) with replacement (ii) without replacement, find the probability that the selected balls containing (a) exactly 1 (b) atleast 1, black balls.
- A test consists of 10 multiple choice questions, each with four possible answers, 2 one of which is correct. To pass the test a student must get 60% or better on the test. If a student randomly guesses, what is the probability that the student will pass the test?
- State the m.g.f. of Normal distribution. Obtain its c.g.f. and hence β_1 and β_2 . 3
- For a given p.d.f.

 $f(x) = kx^2 (1 - x)^3$, 0 < x < 1

= 0, otherwise

Find(i) k (ii) P(0.1 < X < 0.7) (iii) $E(X^r)$

- If X1,X2,...,Xn are independent r.v.'s with m.g.f. Mx1(t), Mx2(t),.... Mxn(t) then 5 prove that the m.g.f. of $Y = \sum_{i=1}^{n} X_i$ is given by $My(t) = \prod_{i=1}^{n} M_{X_i}(t)$.
- If X is N(μ , σ^2) variate. Show that Y= aX +b is N(a μ +b , α^2 σ^2), a \neq 0. 6

- If X has U[$\theta_1 \theta_2$, $\theta_1 + \theta_2$]. Find θ_1 and θ_2 so that the mean and variance of X, are respectively equal to the mean and variance of $\chi^2_{(6)}$. If X₁,X₂,....,X₁₆ is a r.v. of size n=16 from N(50, 100), determine (a)P($796.2 \le \sum_{i=1}^{16} (Xi 16)^2 \le 2630$) (b) P($726.1 \le \sum_{i=1}^{16} (Xi \overline{X})^2 \le 2500$) 7
- 8

,