Seat No.:

SARDAR PATEL UNIVERSITY

No. of pages: 02

[A-4]

B.Sc. (IV-Semester)

EXAMINATION 2022

Tuesday, 04th October

12:30pm-02:30pm

US04CMTH02-Mathematics

Differential Equations

Total Marks: 70

Note: Figures to the right indicates full marks of question.

0: 1 Answer the following by selecting the correct answer from the given options:

[10]

- 1. Orthogonal trajectories of the given curves intersect them at----- angle.
 - a. acute

- b. right
- d. none of these

- 2. One solution of $\frac{dx}{yz} = -\frac{dy}{xz} = \frac{dz}{xy}$ is given by ----
 - a. $x^2 + y^2 = c$
- b. $x^2 + z^2 = c$ c. $x^2 y^2 = c$

- 3. Integral curve of xdx = -ydy = zdz is given by
 - a. $x + y = c_{1,}z + y = c_{2,}$ b. $x^{2} + z^{2} = c$ c. $x^{2} + y^{2} + z^{2} = c$
- d. none of these
- 4. Eliminating the arbitrary function f from $z = f\left(\frac{x}{y}\right)$, we get----
 - a. yp + xq = x
- $b. xp yq = 0 \qquad c. xp + yq = 0$
- 5. The solution of the Pfaffian differential equation ydx + xdy zdz = 0 is----
 - a. $x^2 + y^2 z = c$
- b. $2xy z^2 = c$ c. 2xy z = c
- d. $2x^2 + 2v^2 z^2 = c$
- 6. There exist a relation f(u, v) = 0 between u and v not involving x and y explicitly if----
 - $a.\frac{\partial(u,v)}{\partial(x,v)}=1$

- b. $\frac{\partial(u,v)}{\partial(x,v)} = 0$ c. $\frac{\partial(u,v)}{\partial(x,x)} = 1$
- $d \cdot \frac{\partial(u,v)}{\partial(x,r)} = 0$

- 7. A complete integral of the P.D.E. p + q = pqz is
 - $a.z = \sqrt{2x + a} + \sqrt{2y + b}$
- b. z = 2ax + b c. z = 2y + b
- d. z = (2x + a)(2y + b)

- 8. Order of the P.D.E $\frac{\partial^3 z}{\partial x^3} + xy \left(\frac{\partial^2 z}{\partial v^2}\right)^4 + z^2 \left(\frac{\partial z}{\partial v}\right)^5 = 0$ is

- d. 5
- 9. Two equations p = P(x, y), q = Q(x, y) are compatible if----
 - $a \cdot \frac{\partial P}{\partial v} = \frac{\partial Q}{\partial v}$

- b. $\frac{\partial P}{\partial z} = \frac{\partial Q}{\partial z}$ c. $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$
- d. none of these
- 10. In Charpit's method equation involving only p and q takes the form ------form.
 - a. $\frac{dp}{x} = \frac{dq}{y}$

- b. $\frac{dp}{0} = \frac{dq}{0}$ c. $\frac{dp}{f_x} = \frac{dq}{f_y}$
- $d.\frac{dx}{a} = \frac{dy}{a}$

Q: 2 Do as Directed:

[80]

- 1. Integral curve $\frac{dx}{x} = \frac{dy}{z} = \frac{dz}{y}$ of is given by -----
- 2. Two linearly independent solution of $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$ represents-----
- 3. True or False: In partial differential equation $\frac{\partial z}{\partial x}$ is denoted by q.
- 4. True or False: The equation p + q = 0 is a linear partial differential equation.
- 5. True or False: The equation pq = 1 is a non-linear partial differential equation.
- 6. True or False: Surface orthogonal to a given system of surfaces has a form pP + qQ = R
- 7. The general form of Clairut's equation is-----
- 8. Two partial differential equations f(x, y, z, p, q) = 0 and g(x, y, z, p, q) = 0 are compatible if-----

Q:3 Answer in brief of the following questions. (Any Ten)

[20]

- 1. Find the integral curves of the equations $\frac{dx}{2xz} = \frac{dy}{2yz} = \frac{dz}{z}$
- 2. Define: Orthogonal trajectories of a system of curves on a surface.
- 3. Solve: $\frac{dx}{y} = \frac{dy}{xz} = \frac{dz}{xy}$
- 4.0btain partial differential equation for z = (x + a)(y + b)
- 5. Determine whether the equation 2xzdx + zdy dz = 0 is integrable or not?
- 6. Eliminate *a* and *b* from $z = ax^3 + by^3$
- 7. Find the differential equation of the surface, which orthogonal to the system of surfaces $x^2 + y^2 + z^2 = cz$.
- 8. Verify that $(x a)^2 + (y b)^2 + z^2 = 1$ is the complete integral of $z^2(p^2 + q^2 + 1) = 1$
- 9. Find the particular integral of the P.D.E. p+q=1 passes through the curve $x=0, y^2=z$.
- 10. Find Complete integral of the equation $pqz = p^2(xq + p^2) + q^2(yp + q^2)$
- 11. If z = tx + yf(t) + g(t) then prove that $rt s^2 = 0$.
- 12. Find C.F. of the equation $(D^2 DD') = cosxcos2y$.

Q:4 Attempt any Four of the following.

[32]

1. Solve:
$$\frac{dx}{x+z} = \frac{dy}{y} = \frac{dz}{z+y^2}$$

- 2.0btain the differential equation of orthogonal trajectories for a given system of curves on the given surface.
- 3.0btain the higher order P.D.E. for a function z = f(x, y)
- 4. Find the general solution of the given linear partial differential equation $x^2p + y^2q = (x + y)z$
- 5. Find the equation of the system of surfaces which cut orthogonally the system $x(x^2 + y^2 + z^2) = cy^2$.
- 6. Find the integral surface of the equation $x^2p + y^2q + x^2 = 0$ through the curve xy = x + y, z = 1.
- 7. State and prove required condition for compatibility of two partial differential equations.
- 8. Find complete integral of the equation $pqxy = z^2$.

