Seat number:

[9]

SARDAR PATEL UNIVERSITY

B.Sc.(SEMESTER-III) EXAMINATION - 2022

01/10/2022 Saturday 12:30 p.m. to 2:30 p.m. US03EMTH06 (Operations Research - I)

Maximum Marks: 70

		Esta
Q.1 l	Multiple choice question.	[10]
(1) I	In graphical method the restriction on number of constraint is (a) 2 (b) 3 (c) not more than 3 (d) none of these	
· . (minimize $z = \dots$ (a) maximize (z) (b) maximize $(-z)$ (c) -maximize $(-z)$ (d) none of these	
	In graphical representation the bounded region is known as region. (a) solution (b) optimal (c) basic solution (d) feasible solution	
	In the simplex method for solving of LPP number of variables can be (a) not more than three (b) at least three (c) at least two (d) none of these	
(5)	The variable is added to the constraint of less than equal to type. (a) slack (b) surplus (c) artificial (d) basic	
(6)	The Transportation Problem is said to be balanced if (a) $\sum a_i \neq \sum b_i$ (b) $\sum a_i = \sum b_i$ (c) $z_j - c_j \geq 0$ (d) $z_j - c_j \leq 0$	
(7)	method is used to obtain initial basic feasible solution of Transportation Problem. (a) Simplex (b) North-West corner (c) Newton Raphson (d) Hungarian	
	In non-degenerate solution number of allocated cell is	
	The coefficient of artificial variable in the objective function of maximization problem is (b) M (c) 0 (d) None of these	
(10)	(a) +M (b) -M (c) c (c) c (d) The Penalty in VAM represents difference between	
		[1
Q.2	True or False?	į
	The main origin of Operations research was during the Second world War.	
(2)	Operation research analysts do Predict future operation.	
(3)	The Transportation Problem is said to be unbalanced if $\sum a_i = \sum b_j$	
	North West corner refers to top left corner.	
(5)	Hungarian method is used to obtain initial basic feasible solution of Transportation Problem.	
(6)	Simplex is used for solving Linear Programming problem.	
(7)	to a solving Linear Programming problem.	
	Minimize $z = \text{Maximum } (-z)$	
,		

- Q.3 Answer the following in short. (Attempt any 10)
- (1) Define Operation research.
- (2) Write the standard form of Linear Programming problem, Maximize $z = 4x_1 + 3x_2$ Subject to constraints $3x_1 + 2x_2 \le 4$; $5x_1 + 7x_2 \le 5$; $x_1, x_2 \ge 0$.
- (3) List the applications of OR.
- (4) Define surplus variables.
- (5) Write the standard form of Linear Programming problem, Maximize $z = 15x_1 + 20x_2$ Subject to constraints $2x_1 + 3x_2 \le 40$; $5x_1 + 12x_2 \le 7$; $x_1, x_2 \ge 0$.
- (6) Define unbounded solution.
- (7) What is transportation problem?
- (8) Write dual of the following L.P.P. Maximize $z = 3x_1 + 2x_2$ Subject to constraints $2x_1 + 3x_2 \le 10$; $3x_1 + 4x_2 \le 17$; $x_1, x_2 \ge 0$.
- (9) What do you mean by unbalanced transportation problem?
- (10) Write algorithm of North west corner method.
- (11) Write mathematical form of transportation problem.
- (12) Define loop in MODI method.
- Q.4 Answer the following questions. (Attempt any 4)

[32]

- (1) A firm manufacture two types of product A and B and sells them at a profit of \mathbb{Z} 3 and \mathbb{Z} 5 on type A and B respectively. Each product is processed on two machines G and H. Type A requires 3 minutes of processing time on G and 3 minutes on H; Type B requires 1 minutes of processing time on G and 2 minutes on H. The machine G is available for not more than 5 hrs 10 minutes while H is available for not more than 6 hrs 20 minutes. Formulate this problem as Linear Programming Problem.
- (2) Write short note on the history of operations research.
- (3) Write dual of the following L.P.P. Maximize $z = 3x_1 + 5x_2$ Subject to $x_1 + x_2 \ge 1$; $x_1 + x_2 \le 15$; $x_2 \le 8$; $x_1, x_2 \ge 0$.
- (4) Solve the following L.L.P. using Big M method, Maximize $z=2x_1-x_2$ Subject to constraints $3x_1+2x_2\geq 2;\ x_1+3x_2\leq 3;\ x_1,\ x_2\geq 0.$
- (5) Find the initial basic feasible solution for the T.P. using VAM method.

	A	В	C	D	Supply
1	6	- 3	5	4	22
2	5	9	2	7	15
3	5	7	8	6	8
Demand	7	12	17	9	

(6) Find the initial basic feasible solution for the T.P. using North west corner method.

	D1	D2	D3	D4	Supply
O1	1	2	1	4	30
O2	3	3	2	1	50
O3	4	2	5	9	20
Demand	20	40	30	10	

(7) Find the optimal solution of following Transportation Problem using MODI method.

	Destination				
Source	D_1	D_2	$\overline{D_3}$	D_4	Supply
A	19	14	23	11	11
B	15	16	12	21	13
C	30	25	16	39	19
Demand	6	10	12	15	

(8) Find the optimal solution of following Transportation Problem using MODI method.

	Warehouse				
Factory	\overline{W}_1	W_2	W_3	W_4	Supply
F_1	19	30	50	10	7
$\overline{F_2}$	70	30	40	60	9
$\overline{F_3}$	40	8	70	20	18
Demand	5	8	7	14	<u></u>