

CTC A'	T NO : No. Of Pages : 2
	SARDAR PATEL UNIVERSITY
[8	· · · · · · · · · · · · · · · · · · ·
	US03ECSC01 : Digital Computers Electronics
Date	· 30/09/2022, Friday Time: 12:30pm to 02:30pm Total Marks: 70
Q.1	1919)
V.1	1. The OR gate has two or more input signals. If any input is, the
	output is high. A. high B. low C. both A and B D. none
	2. The NAND gate has two or more input signals. If all inputs are, the
	output is low.
	A low B. high C. both A and B D. none
	3. The NOR gate has two or more input signals. If all inputs are, the
	output is high.
	A. low B. high C. both A and B D. none
	4. A is a combinational circuit that converts binary information from the
	2n coded inputs to a n outputs.
	A. Half Adder B. Decoder C. Encoder D. Comparator
	5. In Comparator, gate is use for comparing bits in word.
	A. XOR B. AND C. NOR D. XNOR
	6is way to simplify the equation.
	A. Boolean Algebra B. K-MAP C. BOTH D. NONE
	7. Half adder is logic Circuit that adds Digit at a time.
	A 1 B. 2 C. 3 D. 4
	R Half adder consist of & Gates
	A. XOR, AND B. XOR, OR C. XNOR, AND D. XNOR, OR
	9. A register is a group of that work together as a unit.
	A. flip-flop B. decoder C. multiplexer D. gates
	10. In D flip-flop, when CLK is hign then output is
	A. high B. low C. invert of input D. same as input
Q.2	Fill up the blank or True/False. [08]
~	
	1. The gate has two or more input signals. All inputs must be high to
	get a high output.
	2. An invert gate is also called a gate.
	3. In k-map, pair eliminates variable.
	4. In k-map, octets eliminates variable.
	5. In half adder xor gate's output is sum. [True / False]
	6. In half adder and gate's output is carry. [True / False]
	7. Ring counter producing words with 1 high bit, which shifts one position per
	clock pulse. [True / False]

8. A buffer register is the simplest kind of register; all it does store a digital

word. [True / False]

- Q.3 Answer the following questions in short (Any 10):
 - 1. Write truth table for: A'B+B'C, ABC +A'B'C'.
 - 2. Draw the circuit for A'B+B'C+AC'.
 - 3. Draw the circuit for (A B)' (BC)(A C).
 - 4. Explain sum of product(SOP).
 - 5. Explain sum of product of sum(POS).
 - 6. Describe Quad in k-map with example.
 - 7. What is Multiplexer?
 - 8. Explain 4x1 multiplexer in detail.
 - 9. Explain full adder in detail.
 - 10. Draw logic diagram of D flip-flop.
 - 11. Draw graphical symbol of D flip-flop.
 - 12. Draw logic circuit of ring counters.
- Q.4 Answer the following questions in LONG (Any 4):

[32]

[20]

- 1. Explain Associative low, distributive low and commutative low.
- 2. Explain De'morgan first and second theorem.
- 3. Define encoder. Explain 8x3 encoder in detail.
- 4. Define decoder. Explain 3x8 decoder in detail.
- 5. Explain binary adder-subtractor 1's Complement adder-subtractor in detail.
- 6. Explain 8x1 multiplexer in detail.
- 7. Explain shift left register
- 8. Explain controlled buffer register.

== * == * == * ==

Page: 2/2