No. of Printed Pages: 3

Sardar Patel University B.Sc. Semester-III Examination - 2022 Friday, 18th November, 2022

Course Code: US /03CSTA52

M.Marks: 70

Time: 10 to 1 p.m

(Elements of Probability Theory)

Note: (i) Simple/Scientific calculator is allowed (ii) Q.3 to 6 each sub questions have 5 marks.

Q.1 Multiple Choice Questions

 (10×2)

- Let X be a r.v. with probability distribution $f(x) = 2/3^x$, x = 1, 2, ... and zero otherwise, then probability that X is even (b) 1/2(c) 1/36
 - ___ where Y = (X 2)/3Given that V(X) = 4 then $V(Y) = ___$

(a) 2/3

(2)

(6)

(b) -14/9

(d) 4/3

0 < P(A) < 1, 0 < P(B) < 1 and $P(A \cup B) = P(A) + P(B) - P(A)P(B)$, then (3)

(a) P(B/A) = P(B) - P(A)

(b) $P(A' \cup B') = P(A') + P(B')$

(c) $P(A \cup B') = P(A')P(B')$

(d) P(A/B) = P(A)

(4)If f(x) = kx, 0 < x < 2 $= k(5-x), 2 \le x < 5$

= 0, otherwise, is the p.d.f. of a r.v. X then the value of k =

(b) 1/13

(c) 2/13

(d) 3/13

Given that $f(x) = k(1+x)^2$, x = 1, 2, 3 and zero otherwise. For what value of k given f(x) being p.m.f? (5) (b) 1/29(c) 1/30(d)7/29

(a) 7/30

(a) $(1/3)^3$

The p.g.f. of a r.v. X is P(t) = 1/(1 - t/3) then P(X = 2) is (b) $(1/3)^2$

(c) 1/3

(d) 1

If A and B are two events such that $B \subset A$, $P(B) \neq 0$, then which of the following is correct? (7) (a) P(B/A) = P(B)/P(A) (b) P(A/B) = P(A)/P(B) (c) P(B/A) = 1 (d) None of these

(8) If $f(x,y) = (x^2 + y^2)/112$, x,y = 0,1,2,3, is the joint probability distribution of X and Y then P(Y = 2) =_____ (d) 50/112

(a) 14/112

(b) 18/112

(c) 30/112

If P(A)=0.7, P(B)=0.2, $P(A^c\cup B^c)=0.9$, then prob. that at least one of the event occurs is (9)Let X and Y have the joint pdf $f(x,y) = \left(\frac{4}{3}\right)(1-xy)$, 0 < (x,y) < 1 and zero otherwise, then E(X) =(10)

 $\{a\} 9/4$

(b) 13/162

(c) 4/9

(d) None of these

Short Type Questions (Attempt Any Ten) Q.2 Given that $f(x) = k(1/2)^x$, is a probability distribution of a r.v. X which takes on values 0, 1, 2, ..., 6. (1) Find the value of k and $P(X \le x)$.

- Find μ_2 if $f(x) = \frac{3}{10}(3x x^2)$, 0 < x < 2 and zero otherwise (2)
- For two events A and B, if $A \subset B$ then P(A/B) =(3) Fill in the blank and show the same by giving counter example.
- Determine V(X) if (i) $M_X(t) = 1/(1-5t)$ (ii) $M_X(t) = 0.7 + 0.3e^t$ (4)
- The joint probability distribution of \boldsymbol{X} and \boldsymbol{Y} is as follows: (5)

X	Y		
	-1	0	1
-1	0	0.2	0
0	0.2	0.2	0.2
1	0	0.2	0

Find the Cov(Y, Y)

- Evaluate $P(A \cup B)$ if 2P(A) = P(B) = 5/13 and P(A/B) = 2/5(6)
- Check whether the following function is p.m.f. or not? (7)

$$f(x) = \frac{1}{2x}$$
, $x = 1, 2, ...$ and zero otherwise

(8) Find E(X) if the distribution function of X is

$$F(x) = \begin{array}{ccc} 0 & , x < 0 \\ 1/2 & , 0 \le x < 1 \\ 5/6 & , 1 \le x < 2 \\ 1 & , x \ge 2 \end{array}$$

- (9) If f(x) = 1/4, -2 < x < 2 and zero oterwise, is the pdf of X. Show that all the odd order moments are zero.
- (10) The joint p.d.f of X and Y is f(x,y) = k(x+3y), 0 < x < 1, 0 < y < 1 and zero otherwise (i) Determine the value of k (ii) the marginal distribution of X.
- (11) If $P(t) = (3-2t)^{-1}$ is the p.g.f. of a r.v. X then find $P(X \ge 1)$,
- (12) State the law of total probability
- Q.3(a) State and prove law of addition for the probabilities of three events.
 - (b) Following are the compositions of two basket flowers:

Basket - I	Basket - II	
Pink - 5	Pink - 4	
White – 3	White – 5	
Yellow - 2	Yellow – 4	

One basket is chosen at random and two flowers drawn from it they happen to be white and yellow. What is the probability that they come from basket - I, II?

OR

- Q.3(a) Do as directed:
 - (i) If $A \subset B$ then prove that $P(A) \leq P(B)$ (ii) $P(A \cap B) \leq P(A) \leq P(A \cup B) \leq P(A) + P(B)$
- (b) A committee of 4 people is to be appointed from 3 officers of the production department, 4 officers of the purchase department, 2 of sales department and 1 chartered accountant. Find the prob. of forming the committee in the following manners:
 - (i) There must be one from each category (ii) It should have at least one from purchase department (iii) chartered accountant must be in the committee.
- Q.4(a) A lot contains 10 items of which 3 are defective. Three items are drawn at random one after other without replacement. Find the probability distribution of no. of non defective items selected. Determine (i) P(X < 1) (ii) $P(X \ge 2)$
- (b) Let X be a r.v. with p.d.f. given as

$$f(x) = kx , 0 \le x < 1$$

$$= k , 1 \le x < 2$$

$$= 3k - kx , 2 \le x < 3$$

$$= 0 , otherwise$$

(i) Determine k (ii) the c.d.f. of X (iii) P(X < 1/2)(iv) P(X > 1/3)(v) P(1/2 < X < 1)

OR

- Q.4(a) A coin is tossed until a head comes up (occur) for the first time. Describe the sample space. Is X discrete r.v or not? Find the probability distribution of X, where X is no. of tails before a head.
 - (b) Given the p.d.f

 $f(x) = ke^{-4x}, x > 0$ and zero otherwise (i) Determine the value of k (ii) the c.d.f. of X

(iii) Evaluate P(X > 3), P(2X + 3 > 5) and P(2 < X < 4).

Q.5(a) The probability distribution of a r.v. X is

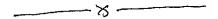
 $P(X = x) = (3/4)^x (1/4), x = 0, 1, 2, ...$ and zero otherwise Find (i) the mean and variance of X(ii)P(X is even)

(b) If f(x) = 1/10, -5 < x < 5 and zero otherwise, is the pdf of X. Find the m.g.f of X and hence mean and variance of X.

OR

- Q.5(a) If $f(x) = \frac{e^{-1}}{x!}$, $x = 0, 1, 2, \dots$ and zero otherwise, is the p.m.f. of X. Find (i) m.g.f (ii) c.g.f (iii) β_1, β_2
 - (b) Two balls drawn with replacement from a box containing 8 red and 4 white balls. If X denotes the no. of white balls drawn. Find the probability distribution of X. Find the mean and variance of X.

Q.6 Consider two r.v's X and Y with joint probability distribution given in the following table:


	inter joine production	Y		
x x	2	4	5	
1	1/12	1/24	1/24	
2	1/6	1/12	1/8	
2	1/4	1/8	1/12	

Find (i) $P(X \le 2, Y \le 4)$ (ii) P(Y = 2/X = 1) (iii) the marginal distribution of X and Y (iv) Are X and Y independent? (v) the correlation coefficient (vi) the conditional distribution of Y given X = 2.

OF

Q.6(a) Do as directed:

- (i) Prove that two independent r.v's are uncorrelated but converse is not true.
- (ii) The joint p.d.f. of two r.v's X and Y is given by $f(x,y) = C(2 \ x + y), 2 < x < 6$; 0 < y < 5 and zero otherwise Find (a) the constant C(b) the marginal distribution of X(c) P(X > 3, Y > 2)
- (b) Given f(x,y) = k(x+2y), x, y = 1, 2 and zero otherwise, is the joint p.m.f. of X and Y. Find (i) the constant k (ii) $P(X \ge 1, Y \le 1)$ (iii) $P(X + Y \le 2)$ (iv) P(X < Y).

. • . , . .