Seat	No.	:	
------	-----	---	--

No. of pages: 03

SARDAR PATEL UNIVERSITY

Bachelor of Science (Semester III) EXAMINATION -2022

US03CMTH52: Multivariate Calculus

Date: 16th November 2022, Wednesday

Time: 10:00 AM to 01:00 PM

Total Marks: 70 Marks

Note: Figures to the right indicate full marks of question.

Q: 1 Answer the following by selecting the correct answer from the given options:

[10]

1. The value of $\int_1^\infty \frac{1}{x^2} dx$ is

a.1

b.0

d. does not exist

2. If $\vec{V} = (3xyz)\bar{\iota} - (2x^2y)\bar{\jmath} + (2z)\bar{k}$ then $|div\vec{V}|$ at (1,1,1)-----

a.0

b.3

d. 2

3. The value of B(m,n) is -----

 $a.\frac{n}{m+n}B(m,n)$

b. $\frac{n}{m+1}B(m,n)$ c. $\frac{m}{m+n}B(m,n)$ d. $\frac{m}{m+1}B(m,n)$

4. If we change the Cartesian variable (x, y) to the Cartesian variable (u, v) in double integral then dxdy = -----

a.dxdy

b Jdudv

c | / | dudv

d = |I| dx dy

5. In double integral total mass M of density 1 over region $0 \le x, y \le 2$ is ------

a.1

b.2

d.4

6. $\int_0^1 \int_0^2 dx dy = -----$

a.1

b.0

c.3

d.2

7. Area of plane region in polar form is given by A = =

 $a \cdot \frac{1}{2} \int_C r^2 d\theta$

 $\mathsf{b}.\int_C r^2 d\theta$

 $c.\frac{1}{2}\int_C rd\theta$

d. $\frac{1}{2}\int_C \left[xdx - ydy\right]$

8. If $\vec{r} = u\vec{i} + v\vec{j} + uv\vec{k}$ than $EG - F^2 = -----$

 $a.1 + v^2$

d. $1 + u^2$

9. A function f(x, y, z) is said to be harmonic if $\nabla^2 f = ----$

d. 0

10. If $\bar{n} = \bar{k}$ then dA = -

a .0

b. dxdz

c. dxdy

d. dydz

- 1. Find the value of $\int_0^\infty x^2 e^{-x^4} dx$.
- 2. Let f be defined by $f(x, y, z) = x^2 siny + 1$. Find the directional derivative of the function f at (0,0,0) in the direction of (1,2,3).
- 3. Show that $curl(r^n\bar{r})=0$, where $\bar{r}=x\bar{\iota}+y\bar{\jmath}+z\bar{k}$ and $r=|\bar{r}|$.
- 4. Evaluate the line integral $\int_C 3(x^2+y^2)ds$ where C: along the circle $x^2+y^2=4$ from (2,0) to (-2,0) (Anti clockwise).
- 5. Find the work done by force $4xy\bar{\iota} 8y\bar{\jmath} + 2\bar{k}$ along the curve (0,0,2) to (3,6,2).
- 6. Find the area of the region bounded by $y = x^2$ and y = 2x + 3
- 7. Evaluate the line integral of $\int_{(0,1,2)}^{(2,\pi,0)} [(ydx + xdy)cosxy + dz]$ on any path.
- 8. Evaluate $\int_C \frac{\partial w}{\partial n} ds$ for the given w and C, $w = e^x cosy + x^3$, C: the boundary of the region $x^2 + y^2 \le 1$ in the first quadrant.
- 9. Identify the surface $\bar{r} = asinhucosv\bar{\imath} + bsinhusinv\bar{\jmath} + ccoshu\bar{k}$.
- 10. By using Divergence theorem evaluate the surface integral $\int_S \int [yzdydz + zxdzdx + xydxdy]$, where $S: x^2 + y^2 + z^2 = 1$.
- 11. Find the volume of the region R by using triple integration, R: In the first octant bounded by $x^2 + z^2 = 1$ and by the plane y = 0, z = 0 and x = y.
- 12. By using Stock's theorem evaluate $\int_{\mathcal{C}} \ \overline{V}.\overline{t}ds$ where $\overline{V}=z\overline{\imath}+x\overline{\jmath}$, $S:0\leq x,y\leq 1,z=1$.
- Q:3 (a) State and prove the Duplication formula.

[05]

(b) Prove:
$$\int_0^{\frac{\pi}{2}} \sqrt{\sin\theta} \times \int_0^{\frac{\pi}{2}} \frac{1}{\sqrt{\sqrt{\sin\theta}}} d\theta = \pi$$

[05]

<u>OR</u>

(a) In usual notation prove that
$$curl(\overline{U} \times \overline{V}) = \overline{U}div\overline{V} - \overline{V}div\overline{U} + (\overline{V}.\overline{\nabla})\overline{U} - (\overline{U}.\overline{\nabla})\overline{V}$$
 [05]

(b) Let
$$f(r) = \frac{e^{\lambda r}}{r}$$
 be a scalar point function then prove that $(\nabla^2 - \lambda^2)f = 0$, where $r = \sqrt{x^2 + y^2 + z^2}$

- Q:4 (a) Transform $\int_R \int (x-y)^2 sin^2(x+y) dxdy$ in uv -plane by taking $u=x-y, \ v=x+y$ where R: is the parallelogram with vertices $(n,0), (2\pi,\pi), (\pi,2\pi), (0,\pi)$. Hence evaluate it. [05]
 - (b) Let f(x,y)=1 be the density of mass in the region $R:0\leq y\leq \sqrt{1-x^2},\ 0\leq x\leq 1$, then find the center of gravity and moment of inertia I_x,I_y,I_0 [05]

(a) Find the centroid of density 1 in the plane area bounded by $y = 6x - x^2$ and $y = x$	[05]
(b) Change the order of an integration $\int_0^{\frac{a}{2}} \int_{\frac{x^2}{a}}^{x-\frac{x^2}{a}} f(x,y) dy dx$	[05]
Q:5 (a) State and prove Green's theorem.	[06]
(b) Evaluate $\int_{S} \int f(x,y,z)dA$ where $f(x,y,z) = \tan^{-1}\left(\frac{y}{x}\right)$, $S: z = x^2 + y^2$, $1 \le z \le 4$, $x,y \ge \frac{OR}{x}$	0 [04]
(a) Verify both form (divergence and curl) of Green's theorem for the given \overline{V} and C .	
$\bar{V} = 7x\bar{\imath} - 3y\bar{\jmath}$ and C: the circle $x^2 + y^2 = 4$	[06]
(b) In usual notation prove that $\int_R \int \nabla^2 w dx dy = \int_{\mathcal{C}} \frac{\partial w}{\partial n} ds$	[04]
Q:6 (a) State and prove Divergence theorem of Gauss.	[06]
(b) By using the triple integration, find the total mass of distribution of density σ in a region R ,	
where $\sigma = xy$ and R : the tetrahedral with vertices $(0,0,0)$, $(1,0,0)$, $(0,1,0)$, $(0,0,1)$	[04]
<u>OR</u>	
(a) State and prove Stoke's theorem.	[07]
(b) Evaluate: $\int_{\theta=0}^{\frac{\pi}{2}} \int_{r=0}^{asin\theta} \int_{z=0}^{\frac{(a^2-r^2)}{a}} r dr d\theta dz$	[03]
*	

•