

Seat	No.	:	
			Property and the second

No. of pages: 03

[47]

SARDAR PATEL UNIVERSITY

Bachelor of Science (Semester III) EXAMINATION -2022

US03CMTH51: Ordinary Differential Equations							
Date: 15 th November 2022, Tuesday							
Time	: 10:00 AM to 01:00 P	Total Marks: 70 Marks					
Note: Figures to the right indicates full marks of question.							
Q: 1 Answer the following by selecting the correct answer from the given options: [10]							
1. Integral factor of differential equation of $\cos^2 x \frac{dy}{dx} + y = \tan x$ is							
	a.e ^{cosx}	b.e ^{tanx}	C. tanx	d. cosx			
2.	2. Solution of the equation $y = px + \frac{a}{p}$ is given by						
	a.y = cx	$b.y = cx + \frac{a}{c}$	c. y + cx = a	d. cy = x + a			
3,	3. The solution of $p + 2x = 0$ is $y =$						
	$a.c - \frac{x^2}{2}$	$b.c - x^2$	$c. x^2 - c$	d2x			
4.	$\frac{1}{D^2+9}\cos 3x =$						
	$a.\frac{x}{6}sin3x$	$b\frac{x}{6}sin3x$	$c\frac{x}{6}\cos 3x$	$d.\frac{x}{6}\cos 3x$			
5.	The complementary function of $(D^2 - 1)y = e^x + e^{-x}$ is						
•	$a.C_1e^x-C_2e^{-x}$	$b.C_1e^x + C_2e^{-x}$	$c.(C_1+C_2x)e^x$	$d.(C_1+C_2x)e^{-x}$			
6.	The particular integral of $(D-7)^4 = e^{7x}$ is						
	$a \frac{x^7}{24} e^{7x}$	$b.\frac{x^7}{24}e^{4x}$	$C \cdot \frac{x^4}{24} e^{7x}$	$d.\frac{1}{24}e^{7x}$			
7.	If $L^{-1}{f(s)} = f(t)$, then $L^{-1}{\bar{f}(s-a)} =$						
	$a.e^{at}f'(t)$	$b.e^{at}f(t)$	c.f(t)	d. None of these			
8.	$\int_0^\infty e^{-3t} \sin 4t dt =$						
	a. 4/25	$b.\frac{25}{4}$	C. 4/13	d. $-\frac{4}{13}$			
9.	Orthogonal trajectories of $y^2 = 4a(x + a)$ is						

a.4c(x+c) b.4(x+c) c.4a(x+c) d. 4a(x+a)

10. Kirchhoff's second law states that the sum of the voltage drop across inductor and resistor is ----

c. inverse

b. same

a .different

d. Not found

Q:2 Answer in brief of the following questions. (Any Ten)

[20]

- 1. Solve: $(x^2 2xy y^2)dx (x + y)^2dy = 0$
- 2. Solve: $p = tan\left(x \frac{p}{1+p^2}\right)$
- 3. Eliminate the constant a and b by obtaining differential equation $y = e^x(acosx + bsinx)$
- 4. Find the particular integral (P.I.) of $(D^3 + 4D)y = 2x$
- 5. Find the complementary function (C.F.) of $(D^2 + 4)y = sin2x$
- 6. If y_1 and y_2 be two solutions of a linear differential equation $\frac{d^ny}{dx^n} + a_1\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_ny = 0$ and C_1 and C_2 are two arbitrary constants, then prove that $C_1y_1 + C_2y_2$ is also solution.
- 7. Find Laplace transform of sin32t.
- 8. If $L[f(t)] = \bar{f}(s)$ then $L\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} \bar{f}(s)ds$, provided integral exist.
- 9. State Linearity property and First shifting property.
- 10. A 12V battery is connected to a simple series circuit in which the induction is $\frac{1}{2}H$ and resistance is 10Ω . Determine the current i if i(0) = 0
- 11. State Newton's law for cooling.
- 12. Find the curve through the point (1,1) in the XY-plane having at each of its points having the slope $-\frac{y}{x}$.
- Q:3 (a) Prove that the necessary and sufficient condition for the differential equation Mdx + Ndy = 0 to be exact is that $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ [06]
 - **(b)** Solve: $y(ydx xdy) + 2x^2(ydx + xdy) = 0$

<u>OR</u>

(a) Solve: $xyp^2 - (x^2 + y^2 - 1)p + xy = 0$

[05]

[04]

- (b) Define and solve Clairaut's equation, also solve $y^2 2pxy + p^2(x^2 1) = m^2$
- [05]

Q:4 (a) Obtain the particular integral of $f(D)y = e^{mx}$, where m is a constant.

- [06]
- (b) Solve $(D^2 5D + 6)y = 4e^x$ subject to the condition that y(0) = y'(0) = 1. Hence find y(16)

[04]

[05]

[05]

<u>OR</u>

- (a) In usual notation prove that $\frac{1}{f(D)}xV = \left[x \frac{1}{f(D)}f'(D)\right]\frac{1}{f(D)}V$, where V is a function of x
- (b) Solve: $x^3D^3 + 2x^2D^2 + 2y = 15(x x^{-1})$

Q:5 (a) Evaluate: $L^{-1}\left\{\frac{s+2}{(s+3)(s+1)^3}\right\}$

[05]

(b) Evaluate: $L(t^2 sin^2 t)$

[05]

<u>OR</u>

(a) Solve: $\int_0^\infty \frac{cosat-cosbt}{t} dt$

[05]

(b) If $L^{-1}[\bar{f}(s)] = f(t)$ and $L^{-1}[\bar{g}(s)] = g(t)$ then $L^{-1}[\bar{f}(s), \bar{g}(s)] = \int_0^t f(u) \cdot g(t-u) du$

 $= \int_0^t f(t-u).g(u)du$ [05]

- Q:6 (a) It is found that 0.5 percentage of radium disappears in 12 years. (i) What percentage will disappear 1000 years? (ii) What is the half-life of radium? [05]
 - (b) 100 g, of a certain solvent is capable dissolving 50g, of a particular solute. Given that 25g, of the undissolve solute is contained in the solvent at time t=0 and that 10g, dissolved in 2 hours. Find the amount Q of the dissolve solute at any time t and t=6. [05]

OR

- (a) Find the family orthogonal to the family $y = ce^{-x}$ of exponential curves. Determine the members of each family passing through (0,4) [05]
- (b) Bacteria in a certain culture increase at a rate proportional to the number present. If the number doubles in one hour, how long does it take for number triple? [05]

____X-__

[3 of 3]