

Seat No. :

Date: 16/11/2022, Wednesday

No. of Printed Pages: 02

C39J SARDAR PATEL UNIVERSITY

Bachelor of Science (Semester-III) Examination - 2022 US03CMTH22 (Multivariate Calculus)

[ime	: 10:00 a.m. to 1:00 p.m. Total: 70 Marks	
Q.1	Multiple choice questions.	[10
(1)	The value of $\int_{-\infty}^{0} \frac{1}{\sqrt{3-x}} dx = \dots$	
	(a) 0 (b) ∞ (c) 3 (d) 1	
(2)	The value of $\int_0^\infty \frac{1}{x^2+4} dx$	
(0)	(a) 0 (b) $\frac{1}{1}$ (c) $\pi/2$ (d) $\pi/4$	
(3)	The value of $\int_{-\infty}^{\infty} \frac{1}{4x^2+25} dx$	
(A)	(a) $\pi/10$ (b) $\pi/5$ (c) $\pi/2$ (d) π If we change Cartesian variable (x, y) to Cartesian variable (r, θ) in double	
(*)	integral then $dxdy = \dots$	
	(a) dudv (b) $rdrd\theta$ (c) $ J dudv$ (d) $ J dxdy$	
(5)	$ \int_{0}^{1} \int_{0}^{1} dx dy = \dots $ (a) 1 (b) 0 (c) 3 (d) 2	
	(a) 1 (b) 0 (c) 3 (d) 2 $\int [fdx + gdy + hdz]$ is independent of path iff $fdx + gdy + hdz$ is	
	(a) 0 (b) not exact (c) 1 (d) exact	٠
(7)		
	Area of plane region in Polar form is given by A =	
(8)	$ \int_{0}^{1} \int_{0}^{2} \int_{0}^{3} dx dy dz = \dots $ (a) 1 (b) 6 (c) 3 (d) 2	
	(a) 1 (b) 6 (c) 3 (d) 2	
	$\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x dx dy dz = \dots$	
	(a) 1 (b) 0 (c) 2 (d) $1/2$	
(10)	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x dx dy dz = \dots$	
	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	

Q.2 Short Answer Question. (Attempt any TEN)

[20]

(1) Find $\boxed{15}$.

(2) Prove that B(7,5) = B(5,7).

(3) If f(x, y, z) = 4(x+y) - 3z + 7y, then find grad f at the point $(\sqrt{7}, \log 5, \frac{10}{700000})$.

