

[38] SARDAR PATEL UNIVERSITY

B.Sc. (SEMESTER - III) EXAMINATION-2022 (On demand) 20/06/2022 Monday 12:00 p.m. to 2:00 p.m.

US03SMTH21 (Number Theory I)

Maximum Marks: 50	
Q.1 Multiple choice question.	18]
(1) $(a, b) \ge \dots$ (a) a (b) 2 (c) 1 (d) 0 (2) If $a = bc$; $a, b, c \in \mathbb{Z}$ then	
(a) a/c (b) a/b (c) b/c (d) c/a	
(3) If n is odd integer then $3^n + 1$ is divisible by	
(4) If a/k , b/k , $k > 0$ then $\left(\frac{k}{a}, \frac{k}{b}\right) = \dots$	
(a) 1 (b) $k(a, b)$ (c) $\frac{k}{(a, b)}$ (d) $\frac{k}{[a, b]}$	
(5) Any prime factor of M_p is p . (a) < (b) = (c) > (d) \leq (6) $T(11) = \dots$	•
(a) 3 (b) 12 (c) 2 (d) 11	
(7) $\mu(12) = \dots$ (a) 1 (b) 0 (c) -1 (d) 3	
(8) If a is prime then $P(a) = \dots$ (a) a (b) $a-1$ (c) 1 (d) $a+1$	
Q.2 Do as directed.	[06]
(1) The GCD of $(-2,-6) = \dots$	
(2) If b/a then $(a, b) = b \forall \ a, b \in \mathbb{Z}$. (True or False?)	
(3) The LCM of $[12,30] = \dots$	
(4) 111 is a prime number.(True or False?)	
(5) $S(11) = 12.$ (True or False?)	

- (6) $\mu(10) = \dots$
- Q.3 Answer the following questions in short. (Attempt any 6)

[12]

- (1) Prove that $(a-s)/(ab+st) \Rightarrow (a-s)/(at+sb)$.
- (2) Prove that c/a, $c/b \Rightarrow c/(ma + nb) \quad \forall m, n \in \mathbb{Z}$.
- (3) Find P(50).
- (4) Prove that [a, b, c] = [[a, b], c].
- (5) Define Prime number with example.
- (6) Find highest power of 2 in 40! i.e 2(40!)
- (7) Find number of multiple of 7 among the integers from 100 to 400.
- (8) Find [140,145,155].
- Q.4 Long Questions (Attempt any 4)

[24]

- (1) State and prove Fundamental theorem of divisibility.
- (2) Prove that $(a^m 1, a^n 1) = a^{(m,n)} 1$.
- (3) State and prove the relation between G.C.D. and L.C.M. of two numbers.
- (4) If P_n is n^{th} prime number then prove that $P_n < 2^{2^n}$, $\forall n \in \mathbb{N}$.
- (5) State and prove unique factorization theorem for positive integers.
- (6) If a is a square number then prove that S(a) is odd integer.
- (7) In usual notation prove that $u_{m+n} = u_{m-1}u_n + u_m u_{m+1}$, $\forall m, n \in \mathbb{N}$
- (8) Let x be any positive real number and n be any positive integer then prove that among the integers from 1 to x the number of multipliers of n is $\left[\frac{x}{n}\right]$.