Seat No.:

SARDAR PATEL UNIVERSITY

No. of pages: 03

B.Sc. (III-Semester) EXAMINATION 2023

[57]

Tuesday, 14th IYAC. 2022

12:00pm 2:00pm

US03CMTH 22-Mathematics

MULTIVARIATE CALCULUS

Total Marks: 70

Note: Figures to the right indicates full marks of question.

Q: 1 Answer the following by selecting the correct answer from the given options: [10]

- 1. The value of $\int_0^3 \frac{dx}{\sqrt{9-x^2}} = ----$
 - a. 0
- b. 1
- $C.\frac{\pi}{2}$

- d. ∞
- 2. The value of m for which the vector field $\vec{F} = (2x + y)\bar{\imath} + (3x 2z)\bar{\jmath} + (x + mz)\bar{k}$ is solenoid
 - a. 0
- b. 2
- c. -2
- d. 1

- - a. $\beta(m,n)$
- b. $\beta(m+1,n)$ c. $\beta(m,n+1)$
- d. $\beta(m+1, n+1)$
- 4. In double integration volume of f(x,y) over region R is given by V=----

 - a. $\int \int_{R} dxdy$ b. $\int \int_{C} dxdy$ c. $\int \int_{R} f(x,y) dxdy$ d. $\int \int_{R} dxdydz$
- 5. Work done by force \overline{P} over the curve C is given by W=
 - a. $\int_C \overline{P} \cdot d\overline{r}$ b. $\int_C \overline{P} d\overline{r}$
- c. $\int_C \overline{P} \, dxdy$ d. $\int_C \overline{P} \, dxdydz$
- 6. If $x = r\cos\theta$, $y = r\sin\theta$ then Jacobin J = -----
- b. r^2

- d. 2
- 7. The surface $\vec{r} = aucosv\vec{i} + ausinv\vec{j} + u^2\vec{k}$ represents -----
- b. elliptic paraboloid c. circle
- d. hyperbolic 1-sheet
- 8. $\int_C [fdx + gdy + hdz]$ is independent of path iff fdx + gdy + hdz is-----
- b. not exact
- c. 1

d. exact

- 9. $\int_0^1 \int_0^1 \int_0^1 x dx dy dz = -----$
- c. 2

10. In triple function total mass of density $\sigma(x, y, z)$ in region R is given by M = -------

- a. $\int \int_{R} \sigma^{2} dx dy$ b. $\int \int_{R} dx dy$ c. $\int \int_{R} \int \sigma dx dy dz$ d. $\int \int_{R} \int 2 \sigma dx dy dz$

- 1. True or False: Beta function $\beta(m, n)$ is convergent for m > 0, n > 0.
- 2. True or False: If $\emptyset = \frac{1}{x}$ where $r^2 = x^2 + y^2$ then $\nabla^2 \emptyset = 0$.
- 3. $\int_0^1 \int_0^x dx dy = ----$
- 4. For the curve y = -x, $\frac{ds}{dt} = ----$
- 5. True or False: If $f = y^3$, $g = x^3 + 3xy^2$ then $\frac{\partial g}{\partial x} \frac{\partial f}{\partial y} = 3x$
- 6. If $W = 2x^2 + y^2$ then $\nabla^2 W = -----$
- 7. A function f(x, y, z) is said to be harmonic if $\nabla^2 f =$
- 8. True or False: If $\frac{\partial f}{\partial n} = \frac{\partial g}{\partial n}$ on S then f g is constant in R.

Q: 3 Answer in brief of the following questions. (Any Ten)

[20]

- 1. Find the equation of tangent plane and normal line to the surface $x^3y^2 3x^2z^3 = -zy + 2$ at the point (0, 2, 1)
- 2. In usual notation prove that $n\beta(m+1,n) = m\beta(m,n+1)$
- 3. Let f be defined by $f(x, y, z) = x^2 siny + 1$. Find direction derivative of the function f at (0, 0, 0) in the direction of (1, 2, 3).
- 4. Evaluate $\int_C 3(x^2 + y^2) ds$, where C: $x^2 + y^2 = 1$ from (1,0) to (0,1) (clockwise direction)
- 5. Find the total mass of density of 1 in the region bounded by $y^2 = 6x$, y = 0, x = 6.
- 6. Change the order of an integration $\int_0^c \int_0^y f(x,y) dxdy$
- 7. Represent the surface $x^2 + y^2 + z^2 = a^2$ in parametric form.
- 8. Find the area of the region bounded by $r = a(1 + cos\theta)$
- 9. Evaluate: $\int_{(0,1,2)}^{(2\pi,0)} [((ydx + xdy)cosxy + dz)]$
- 10. Evaluate: $\int \int_S \left[xdydz + ydxdz + zdxdy\right]$ where $S: x^2 + y^2 + z^2 = a^2$ by applying Divergence theorem.
- 11. Let R be a closed region in space and S be its boundary. Let g be harmonic function in R, then prove that $\int_S \frac{\partial g}{\partial n} dA = 0$.
- 12. Evaluate $\int_C \bar{V}.\bar{t} \, ds$ using Stock's theorem for the given $\bar{V} = z\bar{\iota} + x\bar{\jmath}$ and $S: 0 \le x, y \le 1, z = 1$.

- (1) Define Beta and Gamma function. State and prove relation between Beta and Gamma function.
- (2) In usual notation prove that: $curl(\overline{U} \times \overline{V}) = \overline{U}div\overline{V} \overline{V}div\overline{U} + (\overline{V}.\overline{V})\overline{U} (\overline{U}.\overline{V})\overline{V}$
- (3) Transform $\int \int_R (x+y)^3 dx dy$ in uv-plane by taking u=x+y, v=x-2y where R is the parallelogram with vertices (1,0),(0,1),(3,1) &(2,2). Hence evaluate it.
- (4) Find the centroid of density 1 in the plane area bounded by $y = 6x x^2$ and y = x
- (5) State and prove Green's theorem for plane.
- (6) Verify both vector form (divergence and curl form) of Green's theorem for the given \bar{V} and C, $\bar{V} = 7x\bar{\iota} 3y\bar{\jmath}$, C: the circle $x^2 + y^2 = 4$.
- (7) State and prove Divergence theorem of Gauss.
- (8) Verify the Stock's theorem for $\bar{V}=(2x-y)\bar{\iota}-yz^2\bar{\jmath}-y^2z\bar{k}$; and surface S: the upper half surface of the sphere $x^2+y^2+z^2=1$.

