Seat No.:

SARDAR PATEL UNIVERSITY

No. of pages: 03

B.Sc. (III-Semester) EXAMINATION 2022

Monday, 13-6-2022

12:00pm-2:00pm

US03CMTH21-Mathematics

Numerical Methods

Total Marks: 70

Note: Figures to the right indicates full marks of question.

Q: 1 Answer the following by selecting the correct answer from the given options: [10]

- 1. sinx + 2 = 3x is known as ----- equation.
 - a. algebraic
- b. quadratic
- c. transcendental
- d. linear
- 2. The numerical difference between the true of quantity and its approximate value is called ·----error.
 - a. absolute
- b. relative
- c. percentage
- d. syntax
- 3. ---- method is not used for finding root of an equation.
 - a. Newton-Raphson b. Simplex
- c. Bisection
- d. Iteration

- 4. $\nabla y_{10} = 10, y_{10} = 25$ then $y_9 = ----$
 - a. 15
- b. -15
- c. 5

d. -5

- 5. $(1 + \Delta)(1 \nabla) = ----$
 - a. 1

- b. 0

- d. 3
- 6. The algebraic sum of any difference column in difference table is ----
 - a. any number
- b. 1
- c. 2

- d. zero
- 7. In the method of successive approximation $P_1 = ---$
 - a. $\frac{1}{h_{V_0}}(y_p y_0)$ b. $\frac{1}{h}(y_p y_0)$ c. $\frac{1}{h_{V_0}}y_4$
- d. $\frac{1}{\Delta v_0} y_0$

- 8. In general $[x_3, x_4] = -----$
 - - $[x_4, x_3]$ b. $[x_1, x_4]$ c. $[x_3, x_2]$
- d. $[x_1, x_2]$
- 9. By putting n=----- in the General formula for integration, we get Simpson's 3/8 rule.
 - a. 1
- b 2
- c. 3
- d. -1
- 10. $y_{n+1} = y_n + hf(x_n, y_n)$ is known as ----- 's method.
 - a. Euler
- b. Picard c.
 - Taylor
- d. Runge-Kutta

[80]

- 1. For function f(x) if f(a) < 0, f(b) > 0 then there exist $----x \in (a,b) \Rightarrow f(x) = 0$.
- 2. True or False: Every polynomial of n^{th} degree has n and only n roots.
- 3. True or False: $y_{n+4} = E^{-2}y_{n-2}$
- 4. In forward difference $\Delta^2 y_0 =$
- 5. True or False: Divided differences are symmetric of their arguments.
- 6. The Lagrange's interpolation formula is applicable for -----arguments.
- 7. For $\int_0^6 \frac{1}{1+x} dx$ in Simpson's 1/3 rule with 4 strips, then h=------
- 8. True or False: The Picard's method is for finding solution of algebraic equation.

Q:3 Answer in brief of the following questions. (Any Ten)

[20]

- 1. An approximation value of π is given by $X_1 = \frac{22}{7} = 3.1428571$ and it's true value is X = 3.1415926. Find the absolute and relative errors.
- 2. If $x_1 = 0.5$, $x_2 = 0.816497$, $x_3 = 0.741964$ then find x_4 by using Aitkin's Δ^2 process.
- 3. Derive the formula to obtain \sqrt{N} by using Newton-Raphson method.
- 4. Evaluate: $\left(\frac{\Delta^2}{E}\right) x^3$
- 5. Prove: $\mu = \frac{1}{2} \left[E^{\frac{1}{2}} + E^{\frac{-1}{2}} \right]$
- 6. If $y_0 = 1$, $y_1 = 2$, $y_2 = 11$, $y_3 = 34$ then find $\Delta^3 y_0$.
- 7. Given the set of tabulated points (x,y) which are (1,-3), (3,9), (4,30) and (6,132). Obtain the value of y at x=2 using Newton's divided difference formula.
- 8. Using Lagrange's interpolation formula, find f(9) for the data:

х	2	4	7
У	10	26	65

- 9. State first and second order differentiation formula for Newton's forward interpolation formula.
- 10. Evaluate: $\int_0^1 \frac{1}{1+x} dx$ by using Trapezoidal rule for h=0.5
- 11. State second order Runge-Kutta formula.
- 12. Discuss the geometrical interpretation of Simpson's 1/3 rule.

- 1) Discuss the Iteration method for approximation of a real root of an equation.
- 2) Find a real root of an equation $x^3 4x 9 = 0$ by method of False position, correct up to three decimal places.
- 3) Using Gauss's forward interpolation formula find f(32), given that f(25) = 0.2707, f(30) = 0.3027, f(35) = 0.3386, f(40) = 0.3794.
- 4) Derive Stirling's interpolation formula for equally spaced values of arguments.
- 5) Obtain first and second order numerical differentiation formula for Gauss forward formula.
- 6) Tabulate $y = x^3$ for x = 2, 3, 4 and 5 and hence calculate $\sqrt[3]{10}$, hence correct up to three decimal places.
- 7) Determine the value of y when x = 0.1 given that y(0) = 1 and $y' = x^2 + y$, h = 0.05 using Euler's modified method.
- 8) Derive the Simpson's 3/8 rule.

[3of 3]