

Seat No.

NV 0 Page :3

[66]

SARDAR PATEL UNIVERSITY

B Sc. - III Semester

Course Code: US03CELC01 Electronics and Communication

Date: 12/6/2022, Time: 12.00 to 2.00 pm

TOTAL MARKS 70

Q. 1 Multiple Choice Questions:

10

- 1. Gradient is
 - (i) A vector normal to the surface
 - (ii) A vector parallel to surface
 - (iii) A vector away from the surface
 - (iv) None of above
- 2. Divergence is del operated on
 - (i) Scaler quantity
 - (ii) Vector quantity
 - (iii) Tensor quantity
 - (iv) Optimum quantity
- 3. A function f(x) is said to be odd if f(-x)
 - (i) = f(x)
 - (ii) = -f(x)
 - (iii) = 0
 - (v) = -1
- 4. The fourier series for f(x) in the interval $\alpha < x < \alpha + 2\pi$ is given by

(i)
$$f(x) = \frac{a_o}{2} + \sum_{n=0}^{\infty} a_n \cos nx + \sum_{n=0}^{\infty} b_n \sin nx$$

$$(ii) f(x) = a_0 + \sum_{n=0}^{\infty} a_n \cos nx + \sum_{n=0}^{\infty} b_n \sin nx$$

$$(iii) f(x) = \frac{a_o}{2} + \sum_{n=0}^{\infty} a_n \sin nx + \sum_{n=0}^{\infty} b_n \cos nx$$

- (iv) None of the above.
- 5. $\cos n \pi =$
 - (i) -r
 - (ii) $(-1)^n$
 - (iii) (
 - (iv) 1
- 6. The laplace transform of eat
 - (i) 1/s-a
 - (ii) a/s-a
 - (iii) s/s+a
 - (iv) As/s+a
- 7. The numerical value of Γ 3/2 is
 - (i) $\sqrt{\pi}$
 - (ii) $\sqrt{\pi}/2$
 - (iii)
 - (iv)

- 8. The Laplace transform of eat tn is given by
 - (i)
 - $\frac{n!}{(S-a)^{n+1}}$ (ii)
 - (iii)
 - (iv) None of the above
- 9. $F(s) = \int_{-\infty}^{+\infty} f(t)e^{ist}dt$
 - (i) Fourier transform
 - (ii) Laplace's transform
 - (iii) Integral transform
 - (iv) None of above
- 10. $e^{i\Theta} e^{-i\Theta} =$
 - (i) 2icos ⊕
 - (ii) 2isin @
 - (iii) 2itan @
 - (iv) 2icot Θ

Q2: True or False

- 1. A vector is specified by both magnitude and direction.
- 2. Gradient is del operated on scalar quantity.
- 3. Even function is symmetrical about X-axis.
- 4. A function f(x) is even if f(-x) = -f(x).
- 5. Sin n $\pi = 0$
- 6. The numerical value of $\Gamma 1/2$ is $\sqrt{\pi}$.
- 7. The Laplace transform of coshat is $s/s^2 + a^2$.
- 8. $F(s) = \frac{1}{2\pi} \int_{0}^{\infty} f(s)e^{-isx} ds$ is called inverse Fourier transform.

Q3: Answer any 10 questions out of 12 questions briefly.

- 1. Give geometrical interpretation of DOT product.
- 2. Give physical interpretation of Divergence
- 3. Define Incompressible fluid and Compressible Fluid
- 4. Give expressions for a_0 , a_n and b_n .
- 5. Find a_0 for the Fourier series to represent x^2 in the interval $(-\pi \text{ to } \pi)$
- 6. Define even function giving example.
- 7. Find Laplace transform of $1+2\sqrt{t}+\frac{3}{\sqrt{t}}$.
- 8. Find Laplace transform of $(\sin t \cos t)^2$
- 9. Find Laplace transform of cos²2t.
- 10. Complete this equation, $e^{i\Theta} e^{-i\Theta} = ?$ 11. Give definition of Fourier Transform.
- 12. Give definition of Inverse Fourier Transform.

Q4: Answer any 4 questions out of 8 questions elaborately.

- 1. A particle moves along the curve, $x = t^3 + 1$, $y = t^2$, z = 2t + 3 where t denotes time. Find the component of velocity and acceleration at t=1 in the direction i-3j+2k.
- 2. Evaluate div \vec{F} and curl \vec{F} at a point (1, 2, 3) if $\vec{F} = grad[x^3y + y^3z + z^3x x^2y^2z^2]$
- 3. Find the fourier series expansion of $f(x) = e^{-ax}$ in the interval $-\pi < x < \pi$.

20

32

4. Prove that
$$x^2 = \frac{\pi^3}{3} + 4\sum_{n=1}^4 (-1)^n \frac{Cosnx}{n^2}$$
 where

- 5. Find Laplace transform of (i) e^{4t} Sin 2t Cos t (ii) t²cosat 6. Find Laplace transform of (i) t² e^{-3t} Sin 2t (ii) $\frac{cos2t Cos3t}{t}$
- 7. Find Fourier transform of

$$f(x) = \begin{cases} 1 - x^2 & for \quad |x| \le 1 \\ 0 & for \quad |x| > 1 \end{cases}$$

Hence evaluate $\int_{0}^{\infty} \frac{Sinx}{x} dx$.

8. Find fourier transform of

$$f(x) = \begin{cases} 1 - x^2 & for \quad |x| \le 1 \\ 0 & for \quad |x| > 1 \end{cases}$$

$$\int_{0}^{\infty} \frac{x Cosx - Sinx}{x^{3}} Cos \frac{x}{2} dx$$