[21]

SARDAR PATEL UNIVERSITY (B.Sc. Sem. 1 On Demand Examination (NC)) MATHEMATICS - US01EMTH02 - ELECTIVE MATHS

20 June 2022, Monday

Time Duration: 02 Hours, 9:00am to 11:00pm Maximum Marks: 70 Note: Figures to the right indicates the full marks.

	Note: Figures to the right indicates the run marks.	
Q.1	Answer the following by selecting the correct choice from the given options.	[10]
(1)	The domain of function $f=\{ (1,2), (2,5), (3,8), (4,11) \}$ is (a) \emptyset (b) $\{1,3,4\}$ (c) $\{2,5,8,11\}$ (d) $\{1,2,3,4\}$	
(2)	The value of i^{13} = (a) 1 (b) $-i$ (c) i (d) -1	
(3)	If $\log_2 16=4$ then (a) $2^4=16$ (b) $4^{-2}=1/16$ (c) $4^2=16$ (d) $2^{-4}=1/16$	
(4)	The Range of tangent function is = (a) R (b) [0,1] (c) [-1,1] (d) (-1,1)	
(5)	The set of zeroes of cosine function is (a) \emptyset (b) $\{k\pi/k \in Z\}$ (c) $\{(2k+1)\frac{\pi}{2}/k \in Z\}$ (d) $R^+ \cup \{0\}$.	
(6)		
(7)	4(1,2,1) + 2(1,3,3) = (a)(6,10,14) (b)(2,5,4) (c)(6,14,10) (d)(10,6,14).	
(8)		
(9)	For $\bar{x} = (x_1, x_2, x_3) \in R^3$ then $\bar{x} \times \bar{x} = \underline{\hspace{1cm}}$. (a) 0 (b) $\bar{0}$ (c) \bar{x} (d) $-\bar{x}$	
(10)	If $\bar{x}\&\bar{y}$ are two vectors, then $\bar{x}\cdot\bar{y}$ is (a)vector (b) scalar (c) magnitude (d) None of these	
Q.2	Answer the following.(True/False)	[80]
(1)	is an imaginary number.	
(2)	The modulus of a complex number z is denoted by $ z $	
(3)	$\sin\left(\frac{\pi}{2} + \theta\right) = -\cos\theta$	
(4)	$(a^m)^n = a^{m+n}$	
(5)	Matrix multiplication is distributive. $(AR)^T = A^T R^T$	
16-1	1 0 K 1: - 0 K:	

- (7)If $\bar{x} = (2,1,0)$, $\bar{y} = (0,4,-3)$ then $\bar{x} \cdot \bar{y} = 4$
- If $\bar{x} = (x_1, x_2, x_3)$ then $\sqrt{x_1^2 + x_2^2 + x_3^2}$ is called square root of \bar{x} . (8)
- Q.3 Answer ANY TEN of the following.

[20]

- Find inverse of a complex numbers (7, -4). (1)
- Find modulus of 1 i. (2)
- Find range of $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \frac{1}{x}$. (3)
- Solve: $\log x \log(x 1) = \log 3$. (4)
- Prove that $\tan 81^\circ = \frac{\sqrt{3}\cos 21^\circ + \sin 21^\circ}{\cos 21^\circ \sqrt{3}\sin 21^\circ}$ (5)
- (6)Prove that $1+\tan^2\theta=\sec^2\theta$.
- **(7)** Define Skew - Symmetric matrix with one example.
- Prove that $\begin{vmatrix} b^2 + c^2 & c^2 + a^2 & a^2 + b^2 \\ a^2 & b^2 & c^2 \\ 1 & 1 & 1 \end{vmatrix} = 0.$ If $A = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$ then find |A|. (8)
- (9)
- Solve : x(1,1) + y(2,1) = (3,2). (10)
- If \bar{x} =(1,1,1); \bar{y} = (1,2,5); \bar{z} = (1,2,3) then find $(2\bar{x}+3\bar{y})\cdot\bar{z}$ (11)
- (12)Evaluate: |(2,1,1).(-1,2,-3)|.
- Q-4 Answer ANY FOUR of the following. Solve: $\frac{1}{x-3} - \frac{2}{x+4} = \frac{1}{x+6}$.

(32)

- (1)
- If (3x, 2y) + (y, -5x) = (4,6) then find (x, y) & (xy, x y). (2)
- If $\tan \theta + \cot \theta = 2$ then prove that $\tan^n \theta + \cot^n \theta = 2$; $n \in \mathbb{N}$. (3)
- Simplify: $7 \log(\frac{8}{5}) 6 \log(\frac{4}{15}) + 3 \log(\frac{5}{72})$. (4)
- (5)
- If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ then prove that $A^2 5A + 7I_2 = 0$. If $A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$; $B = \begin{bmatrix} 1 & 4 \\ 2 & 5 \end{bmatrix}$ then check $(AB)^T = B^T A^T$. (6)
- If \bar{x} =(1,1,2); \bar{y} = (1,2,1); \bar{z} = (2,1,1) then find $\bar{x} \times (\bar{y} \times \bar{z})$. (7)
- Find the measure of the angle between (1,1,2)&(2,1,1). (8)