

## SARDAR PATEL UNIVERSITY Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2021-2022

## (Mater of Science in Statistics) (Master of Science) (M. Sc.) (Statistics) Semester (II)

| Course Code                    | PS01CSTA54 | Title of the<br>Course | TESTING OF HYPOTHESES |
|--------------------------------|------------|------------------------|-----------------------|
| Total Credits<br>of the Course | 04         | Hours per<br>Week      | 04                    |
|                                | 1          |                        |                       |

| Course      | 1. To known fundamental theories of various approaches for construction of |
|-------------|----------------------------------------------------------------------------|
| Objectives: | confidence sets and testing of parametric and non-parametric hypotheses    |
|             | 2. Applications of these methods to various distributions.                 |

| Course Content |                                                                                                                                                                                                                                                                                                                                                           |                |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Unit           | Description                                                                                                                                                                                                                                                                                                                                               | Weightage* (%) |
| 1.             | Randomized test, randomized version of Neyman-Pearson lemma and<br>its generalization. Uniformly most powerful tests for one sided<br>alternative for one parameter exponential class of densities and<br>extension to the distributions having monotone likelihood ratio<br>property.                                                                    | 25             |
| 2.             | Unbiased tests, its applications to one-parameter exponential family of distribution, Similar tests, UMP similar tests, test with Neyman structure, UMP unbiased tests for parameters of normal distribution, Confidence bounds: Neyman's principal of confidence bounds, uniformly most accurate and uniformly most accurate unbiased confidence bounds. | 25             |
| 3.             | Likelihood Ratio Test (LRT), large sample properties: consistency of tests, asymptotic distribution of LRT, Chi-square goodness of fit test. Sequential Probability Ratio Test (SPRT), properties of SPRT, the fundamental identity of SPRT and its use in derivation of OC and ASN functions.                                                            | 25             |
| 4.             | U-statistics, properties and asymptotic distributions (in one and two<br>samples cases). One sample problem : Kolmogorov-Smiirnov test,<br>Location problem. Wilcoxon signed-rank test. Two sample problem:<br>Wilcoxon-Mann-Whitney test.                                                                                                                | 25             |

| Teaching-   |  |
|-------------|--|
| Learning    |  |
| Methodology |  |





| Evaluation Pattern |                                                                                                                                         |           |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Sr.<br>No.         | Details of the Evaluation                                                                                                               | Weightage |
| 1.                 | Internal Written / Practical Examination (As per CBCS R.6.8.3)                                                                          | 15%       |
| 2.                 | Internal Continuous Assessment in the form of Practical, Viva-voce,<br>Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3) | 15%       |
| 3.                 | University Examination                                                                                                                  | 70%       |

| Course Outcomes: Having completed this course, the learner will |                                                                                                                     |
|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 1.                                                              | understand basic concepts of testing of hypothesis.                                                                 |
| 2.                                                              | be able to distinguish among various approaches of testing of hypotheses.                                           |
| 3.                                                              | be able to understand well-known tests, their properties and applications to one and multi-parameter distributions. |
| 4.                                                              | have basic knowledge on theory of U-statistics and their applications in non-parametric inference.                  |

| Suggested References: |                                                                                                                                    |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Sr.<br>No.            | References                                                                                                                         |
| 1.                    | Dudewicz, E. J. and Mishra, S.N.(1988) Modern Mathematical Statistics                                                              |
| 2.                    | Ferguson, T. S. (1967): Mathematical statistics ( A decision theoretic approach), Academic Press.                                  |
| 3                     | Gibbons, J. D. and Chakraborti, S. (2003) Nonparametric statistical Inference (Third Edition) Marcel Dekker, New York, 4th Edition |
| 4                     | Kale, B. K. and Muralidharan, K. (2015).Parametric Inference: An Introduction,<br>Alpha Science International Ltd.                 |
| 5                     | Kendall, M. G. and Stuart, A. (1979) : The Advanced Theory of Statistics, Vol. 2, (IV edition), Griffin, London.                   |
| 6                     | Lehmann, E. L. (1986) Testing of Statistical hypothesis (John Wiley)                                                               |





## SARDAR PATEL UNIVERSITY Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2021-2022

| 7  | Mood, A. M., Graybill, F. A. and Boes, D. C. (1974). Introduction to the Theory of Statistics, McGrow-Hill Page 18 of 39 |
|----|--------------------------------------------------------------------------------------------------------------------------|
| 8  | Patel S. R. (2021). Classical and Bayesian Inference, IK International, New Delhi                                        |
| 9  | Rajagopalan, M. and Dhanavanthan, P (2012). Statistical Inference, PHI, New Delhi                                        |
| 10 | Rohatgi, V. K. (1976) Introduction to theory of probability and Mathematical Statistics                                  |
| 11 | Sahu, P. K., Pal, S. R. and Das, A. K. (2015) Estimation and Inferential Statistics,<br>Springer India                   |
| 12 | Srivastava, M, Khan, A. K. and Srivastava, N (2012). Statistical Inference (Theory of Estimation), PHI, New Delhi        |

On-line resources to be used if available as reference material

**On-line Resources** 

\*\*\*\*

