

I

Master of Science in Physics M. Sc. (Physics) Semester I

Course Code	PS01EPHY52	Title of the Course	Non-Linear Dynamics, Relativity & Cosmology
Total Credits of the Course	04	Hours per Week	04

Course	This course on Non-Linear Dynamics, Relativity & Cosmology is
Objectives:	Inis course on Non-Linear Dynamics, Relativity & Cosmology is one of the elective courses of physics intended at the MSc level. Its basic objective is to provide training on the basic characteristics of nonlinear dynamics its mathematical treatment and characteristics of chaotic motion. The other units of this paper aim to provide basic training on general theory of relativity and its applications to understand various structure and evolution of cosmology and our universe. It thus aims to provide a flavor of the study related to
	cosmology and the physical processes of early universe.

G	a	
Course	Content	
Unit	Description	Weightage*
		(%)
1	Dynamical systems: Dissipative systems, Attractors, Equilibrium	25%
	solutions, Limit cycles, Periodic solutions, Poincare cuts, Static	
	bifurcations, bifurcations of time-dependent solutions.	
	Lyapunov Exponents and Chaos: One dimensional system,	
	Multidimensional systems Stretching and folding in phase space.	
	Fractal geometry. Systems with chaotic dynamics: dynamics of	
	discrete systems. One dimensional mappings	
2	General relativity: Space, time and gravitation, Covariant	25%
_	differentiation. Riemannian geometry. Space-time curvature.	/ /
	Geodesics. Principle of equivalence Gravitational equations. The	
	Schwarzschild solution.	
	From Relativity to Cosmology: The Einstein Universe. The	
	expanding Universe. Assumptions of Cosmology. The red shifts	
	Apparent magnitude, Hubble's law, Angular size, Einstein Field	
	equations in Cosmology Energy tensors of the universe Solution	
	of Friedmann's equations. Luminosity vs distance. Cosmological	
	models	
3	The Large Scale Structure of the Universe: Astronomy and	25%
5	Cosmology Our galaxy Types of Galaxies Radio sources	2070
	Quasars Structures on the large scale Co-ordinates and	
	catalogues of astronomical objects Classification of stars HR	
	diagram: Expansion of the universe Background rediction	
	Palativistic cosmology	
4	Die Deue auch die Earlie University The E. 1. U.	250/
4	Big Bang and the Early Universe: The Early Universe,	25%

	Thermodynamics of the early Universe, Primordial neutrinos, the proton – neutron ratio, Synthesis of helium and other nuclei, The			
	microwave ba	owave background, Formation of structures in the Universe,		
	The expanding	panding Universe, Growth in the post recombination era,		
	Observational	servational constraints, The inflationary phase, role of dark		
	matter and da	er and dark energy.		
Te	eaching-			
Learning		Off line, Online mode of direct teaching learning, T	utorials, class	
Met	hodology	assignments		
	20	-		

Evaluation Pattern		
Sr.No.	Details of the Evaluation	Weightage
1	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2	Internal Continuous Assessment in the form of Practical, Viva-	15%
	voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS	
	R.6.8.3)	
3	University Examination	70%

Course	Outcomes: Having completed this course, the learner will be able to
Acqui	re
0	the knowledge of mathematical methods to solve nonlinear systems.
0	better understanding of the chaotic dynamics and its characterization.
0	skills to the mathematical details of general theory of relativity and its
	applications towards the understanding of cosmology, large scale structure of the Universe.
0	the knowledge related to various physical processes that would have occurred at the early universe.

Suggeste	d References:
Sr.No.	References
1	1 Classical Mechanics – System of particles and Hamiltonian Dynamics' by Greiner, Springer International Ed. 2003 (second Indian Reprint 2006).
2	2 Introduction to Cosmology by J V Narlikar, Cambridge Univ Press, 1998.
3	3 General Theory of Relativity by P A M Dirac, Prentice Hall of India, 2001.

On-line resources to be used if available as reference material On-line Resources www.liserpune.ac.in www.nrce.niepa.ac.in imagine.gsfc.nasa.gov asppublications.org

