

Course Code	PS04CPHY51	Title of the Course	Nuclear and Particle Physics
Total Credits of the Course	04	Hours per Week	04

Course Objectives:	The basic objective of this course on nuclear and particle physics is to educate the students on various aspects of the static and dynamic properties of nucleus from light nuclei to heavy nuclei.
	To appraise the applications of quantum mechanics in understanding nuclear processes.
	Aims to provide the properties of nuclear force and their consequences in deriving applications for the benefit of our society in terms of energy production, medical, industrial and agricultural applications.
	Aims to provide the modern knowledge regarding the most fundamental constituents of matter and their interactions, the conservation laws abide by them and its consequences that lead to the present understanding of our universe.
	Aims to provide training on the basic aspects of the standard model of particle physics.

Course	Content	
Unit	Description	Weightage* (%)
1	The deuteron Problem: The ground state of deuteron, the Schrödinger wave equation and its solution shape of ground state wave function, Normalization of deuteron wave, radius of deuteron Mixing of orbitals in deuteron, Magnetic moment of Deuteron, Quadrupole moment of deuteron. Nuclear Forces: charge independence, charge symmetry, Non central (Tensor) force, Exchange forces. Nuclear Models: Single particle shell model, Explanation of nuclear data, Nordheim's rules for odd Z - odd N nuclei, Islands of isomerism, Successes and failures of shell model. Collective nuclear model, Rotational motion of the nucleus, Vibration of spherical nuclei, classification of vibration of spherical nuclei. Quadrupole moment of deformed nuclei.	25%

2	Alpha Decay: Basic alpha decay processes alpha decay systematic, Geiger-Nuttall Law for Alpha Decay, Theory of alpha emission, Angular momentum and parity in alpha decay. Beta decay: Experimental information about Beta particles, Energy released in beta decay (Q-value). Continuous beta spectrum and neutrino hypothesis, Fermi theory of beta decay, Fermi-Kurie plot. Angular momentum and parity selection rules, Experimental detection of neutrino. Gamma decay - Electromagnetic transitions, Radiation field multipolarity, selection rules, gamma ray transition probability.	25%
3	Interaction of heavy charged particles with matter: energy loss by electrons, Absorption curve and range, Interaction and slowing down of neutrons in matter. Nuclear reaction theory: Nuclear Reaction mechanism, pre- equilibrium mechanism, Compound nucleus, Direct interaction process in nuclear reactions, Coupled channel theory of inelastic scattering. Nuclear Fusion, Sources of energy in stars, nucleo - synthesis processes, Controlled fusion, Lawson Criterion. Applications of Nuclear Physics: Trace element analysis, Alpha decay applications, Diagnostic and therapeutic nuclear medicine, Hadron therapy.	25%
4	Elementary particle and forces of Interactions: Classification of fundamental forces, Elementary particles and their quantum numbers, Conservation laws, CPT theorem. Gellmann- Nishijima formula, Quark model, Baryons and mesons- their quark structure. Parity non-conservation in weak decays, Wu's experiment. Summary of Standard model of Particle physics: Introduction to field theory, Gauge theory, Electro-Weak theory, Spontaneous symmetry breaking, Higgs boson, Grand Unification attempts and Early Universe.	25%

Teaching- Learning Methodology		Off line / Online mode of direct teaching learning, c discussions, Tutorials, class assignments.	lass
Evaluatio	on Pattern		
Sr.No.	Details of the Evaluation		Weightage
1	Internal Written / Practical Examination (As per CBCS R.6.8.3) 15%		15%
2	Internal Continuous Assessment in the form of Practical, Viva- 15%		
	voce, Quizzes, Seminars, Assignments, Attendance (As per		
	CBCS R.6.8.3)		
3	University Examination 70%		70%
	¥		

Course Out	comes: Having completed this course, the learner will be able to
Acquire	
	In detail the static and dynamic properties of nucleus and will be able to compute the energy released during fission, fusion and other nuclear reactions.
	The understanding of non-central nature of the nuclear force and its properties.
	The knowledge related to various physical processes that occur when charge particles or gamma radiation passes through matter.
	A clear understanding of the nuclear techniques for the energy production, medical and industrial applications.
	A comprehensive understanding of the various forces of nature and the relevant conservation laws and symmetries abide by the fundamental particles and their consequences towards a better understanding of early universe.
	The knowledge of the most fundamental constituents of matter and their interactions.
	The basic concepts of the grand unification theory.
	Elementary training on gauge theory and the standard model of particle physics.

Suggeste	d References:
Sr.No.	References
1	Introductory Nuclear Physics by Kenneth S Krane, John Wiley & Sons,
	Singapore
	(1988)
2	Fundamentals of Nuclear Physics by J. C. Verma, R. C. Bhandari& D.R.S.
	Somayajulu, CBS Publishers & Distributers (2005), New Delhi
3	Fundamentals of Nuclear Physics by Jahan Singh, Pragati Prakashan, Meerut 1st
	ed.2012.
4	Introduction to Particle Physics' by M P Khanna, Prentice Hall of India (1999)
	New
	Delhi.
5	An Introduction to Nuclear Physics' by W N Cottingam& Greenwood,
	Cambridge Univ. Press UK
6	Introduction to High energy Physics' by D H Perkins, Addison Wesley
7	Introduction to Elementary particles' by David Griffiths, John Wiley & Sons
	Singapore (1987).
8	Introduction To Nuclear And Particle Physics' by R C Verma, V K Mittal S C
	Gupta, Prentice Hall of India (2009), New Delhi

On-line resources to be used if available as reference material

On-line Resources

- MIT OpenCourseWare
- <u>CERN@school</u> CERN@school brings technology from CERN into the classroom to aid with the teaching of particle and nuclear physics.
- <u>TimPix</u> Through TimPix school students across the UK are monitoring the radiation levels on the International Space Station (ISS) using data downloaded from Timepix detectors on board the ISS.
- <u>Binding Blocks</u> Binding Blocks is a nuclear physics outreach project that aims to get members of the public and schools to build an eight metre long 3D nuclear chart of all isotopes made completely out of LEGO®. Curriculum-linked workshops cover a range of topics from radiation to energy.
- <u>Teaching Radioactivity</u> A number of teaching resources developed by the Institute of Physics to support the teaching of radioactivity and to give students a more authentic and engaging experience of ionising radiations and sub-atomic particles.
- <u>NUPEX</u> The NUclear Physics EXperience: a free database of knowledge created and maintained by expert nuclear physicists from all over Europe.
- <u>The ABC's of Nuclear Science</u> A brief introduction to nuclear physics covering a wide range of topics from basic nuclear structure to industrial applications of nuclear science.
- <u>Applications from UK Nuclear Physics Research</u> Showcasing the applications of nuclear physics research by UK Universities.

Course Code	PS04CPHY52	Title of the Course	Thin films & Advanced Characterization Techniques
Total Credits of the Course	04	Hours per Week	04

Course Objectives:	This course will provide complete depth to the students how thin films of different materials can be deposited by various experimental techniques along with recent characterisation methods. Apart from this they will also learn how optoelectronic devices like LED's, LASERS can be fabricated at the laboratory scale.
-----------------------	---

Course	e Content	
Unit	Description	Weightage* (%)
1.	Classification of vacuum pumps/Gauges : Molecular drag pump, Sputter ion pump, Classification of gauges : Thermal conductivity gauges, Ionization gauges : Triode and Penning gauge. Theory of thin film nucleation - Impingement, adsorption and thermal accommodation, The capillarity model, Atomistic model, Four stages of thin film growth, cluster coalescence and depletion, Thickness measurement :Optical methods of measuring thin film thickness : FET, FECO, VAMFO, step gauges, ellipsometry, Mechanical methods for measuring thin film thickness : Stylus profilometry, weight measurement, Quartz crystal oscillators.	25%
2.	<i>Evaporation and Sputtering</i> : Physics and chemistry of evaporation, evaporation rate, vapour pressure of elements, evaporation of compounds and alloys, Thermal deposition in vacuum, kinetic theory of gases and emission condition, distribution of deposit, thermal evaporation, electron beam method, sputtering-ion surface interactions ,sputter yield, sputtering of alloys, glow discharge DC sputtering, low pressure sputtering, reactive sputtering. <i>Hybrid and modified PVD processes</i> : Ion plating, reactive evaporation processes, Ion beam assisted deposition processes, Ionized cluster beam deposition, Pulsed laser deposition(PLD), Atomic layer deposition(ALD).	25%
3.	<i>OtherThin film deposition techniques</i> : Radio frequency and magnetron Sputtering, CVD reaction types, PECVD, LECVD, MOCVD, HTCVD, Introduction to Epitaxy, lattice misfit, epitaxy of compound semiconductors, Applications of epitaxy : Optical communications, Light emitting semiconductor devices (e.g. GaN), Molecular beam epitaxy (MBE), Liquid Phase epitaxy (LPE), Vapour phase epitaxy	25%

	(VPE), Langmuir Blodgett films, Spray method : Spray Hydrolysis, Spray pyrolysis.	
4.	<i>Characterization techniques</i> : X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Low energy electron diffraction (LEED), Reflection high energy electron diffraction (RHEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and Angular dependent X-ray photoelectron spectroscopy , RBS (Rutherford back scattering), SIMS (Secondary ion mass spectrometry). SAXS and SANS (small angle X-ray and neutron scattering spectroscopy), Ultraviolet and Bremsstrahlung isochromat spectroscopy, Electron energy loss spectroscopy (EELS).	25%

Teaching-	Lectures using traditional blackboard teaching, Tutorials, class
Learning	assignments as well as the ICT tools for effective delivery of the content.
Methodology	

Evaluation Pattern			
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%	
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%	
3.	University Examination	70%	

Соι	Course Outcomes: Having completed this course, the learner will be able to		
1.	They will learn how to create/measure high vacuum. Theoretical background of growth of thin films will make them aware of how actually films grows and how the thickness of films can be measured by different ways.		
2.	They will have clear basic knowledge of evaporation, sputtering and chemical vapour deposition techniques along with the recent developments made in this field of thin film deposition.		
3.	Epitaxial thin film growth techniques like LPE, MBE, Langmuir Blodgett films have been included in this course so as to expose the students to the present day thin film devices made out of it.		
4.	They will be benefited by studying different modern techniques which are used for characterisation of thin films, i.e SEM, SIMS, RBS,XPS, AES, SAXS, SANS, RHEED, EELS etc.		

Sugges	sted References:
Sr. No.	References
1.	Handbook of Thin Film Technology, L.I. Maissel and R. Glang, McGraw-Hill, 1983.
2.	The Materials Science of Thin Films, Milton Ohring, Academic press, 2002.
3.	Thin Film Phenomena, K. L. Chopra, McGraw-Hill Inc., 1969.
4.	Thin Film Solar Cells, K. L. Chopra and S. R. Das, Springer Publication, 1983.
5.	Material and Devices Characterization, Dieter K. Schroder, John Wiley and Sons, NY, 1990.
6.	Surface Science: An Introduction, K. Oura, V.G. Lifshits, A. A. Saranin, A. V. Zotov and M. Katayama, Springer-Verlag, 2003.
7.	Thin film fundamentals, A. Goswami, New Age International Ltd., 1996.
8.	Materials characterization and chemical analysis, John P. Sibilia, VCH publishers, 1988.
9.	Preparation of thin films, Joy George, Marcel Dekker Inc.,1992.
10.	Vacuum Science and Technology, V.V. Rao, T.B. Ghosh and K.L. Chopra, Allied Publishers Ltd, India, 1998.

On-line resources to be used if available as reference material

On-line Resources

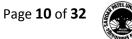
- Vacuum Technology <u>https://www.youtube.com/watch?v=Vu</u> <u>qk-Ag7xV4</u>
- Thin film Mateirals and Deposition <u>https://www.youtube.com/watch?v=p0Xx</u> <u>WT2QdEk</u>
- DC/RF/Sputtering https://www.youtube.com/watch?v= CAVF-OqgR3I
- Magnetron Sputtering <u>https://www.youtube.com/watch?v=rO</u> <u>oL-P9h3lQ</u>
- Characterization technique <u>https://nptel.ac.in/courses/113/105/1</u> <u>13105100/ https://nptel.ac.in/courses/115/103/1</u> <u>15103030/ https://nptel.ac.in/courses/113/104/1</u> <u>13104004/</u>
- Thin film deposition: https://nptel.ac.in/courses/113/105/113105086/

Page **7** of **32**

• Lithography : <u>https://www.youtube.com/watch?v=HMT7DxmkBAw</u>

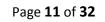
Course Code	PS04EPHY51	Title of the Course	Biophysics (CMP)
Total Credits of the Course	04	Hours per Week	04

Course Objectives:	 To impart the knowledge and understanding of: ➤ essential physical principles, concepts and theories related to the structural and dynamical aspects of biomolecules and cells.
	 the physics of some important phenomena in biomolecules and cells. Amino acids-the building blocks of the proteins, bonding and the
	resultant different types of structures, crystallization techniques for the proteins.
	Experimental separation and spectroscopic techniques necessary for study of biomolecules and cells.



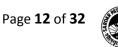
Cours	e Content	
Unit	Description	Weightage* (%)
1.	Molecular forces in biological structuresDispersion forces, Hydrophobic forces, Hydration forces, Hydrogenbonds, Steric repulsions, Bond flexing and harmonic potentials,Stabilizing forces in proteins, Protein force fields, Stabilizing forces innucleic acidsStructural and dynamical aspects of Biomacromolecules:Flexibility of macromolecules, Elasticity, Dynamics of polymer chains,Topology of polymer chains– Super Coiling	25%
2.	 Biophysical phenomena: Aggregating self-assembly, Surfactants, Viruses, Self-Assembly of proteins, Biological membranes physics: Lipid bilayers and membrane proteins, Undulations, Bending resistance, Elasticity, Intermembrane Forces Experimental techniques for separation and study of biomolecules and cells: Chromatography, Electrophoresis, Optical tweezers, Patch-clamping. 	25%
3.	<i>Proteins & Nucleic acids :</i> Protein – Amino acids and the primary structure and secondary structure of proteins, tertiary structure, quaternary structure. Organization of nucleic acid - Primary, secondary, tertiary structure of DNA, Structure of RNA, Sequencing of nucleic	25%

	acids, antigens and antibodies. Crystallization of protein – few general methods of crystallization – vapor diffusion and micro techniques. Biological applications of delocalization in molecules, radiation damage in biological molecules, ESR studies of Myoglobin and haemoglobin molecules, electronic properties of proteins, enzyme studies, carcinogenic activity, NMR applications: biochemistry, biophysics and in medicine.	
4.	<i>Spectroscopic techniques used for studying biological molecules</i> : Light scattering, small angle X-ray scattering, Mass Spectrometry : MALDI-TOF, Ultraviolet/visible spectroscopy, circular dichroism(CD) and optical rotatory dispersion(ORD), fluoroscence spectroscopy, Infrared spectroscopy, Raman spectroscopy.	25%


Teaching-
LearningLectures using traditional blackboard teaching, Tutorials, class
assignments as well as the ICT tools for effective delivery of the content.Methodology

Evalı	Evaluation Pattern			
Sr. No.	Details of the Evaluation	Weightage		
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%		
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%		
3.	University Examination	70%		

Cou	rse Outcomes: Having completed this course, the learner will
1.	Be able to comprehend the role of different types of physical forces in governing the structure, stability and dynamics of biomolecules
2.	Acquire knowledge and understanding of the important structural and dynamical properties of the biomolecules and its role in key biophysical processes.
3.	Be acquainted with the amino acids, their importance in the constitution and structures of proteins, DNA and RNA etc.
4	Learn about the experimental techniques used for crystallization, separation, structure determination, spectroscopic and optical characterization of biomaterials.


Sugge	ested References:
Sr. No.	References
1	Biophysics, Vasantha Pattabhi and N. Gautham, Kluwer Academic Publishers, 2002.
2	Bio-Physics, Principles and techniques: M. A Subramanian, MJP Publishers, 2005.
3	Elementary Solid State Physics: Principles and Applications M. A. Omar, Addison-Wesley Publishing Co., 1975.
4	Molecular and Cellular Biophysics, Meyer B. Jackson, Cambridge University Press, 2006.
5	Applied Biophysics: A Molecular Approach for Physical Scientists. Tom A. Waigh, John Wiley & Sons, Ltd, 2007.
6	Biophysics - An Introduction, Rodney M. J. Cotterill, John Wiley & Sons, Ltd, 2002

On-line resources to be used if available as reference material

On-line Resources

- Physics of Biological
 Systems <u>https://nptel.ac.in/courses/115/101/115</u> 101121/
- A course on introduction to Biophysics <u>https://canvas.ucsc.edu/courses/1077 https://</u> <u>canvas.ucsc.edu/courses/1077/pages/useful-links</u>
- A course on spectroscopic techniques <u>https://nptel.ac.in/content/storage2/courses/102103044/pd</u> <u>f/mod2.pdf</u>

Course Code	PS04EPHY52	Title of the Course	Crystal Growth & Imperfections in solids (CMP)
Total Credits of the Course	04	Hours per Week	04
Course Objectives:	 processes, ph phenomena, ra many of the p ➤ To understand 	hase equilibrium adiation damage obysical propertion d the basics of predicting, mo	aperimental background to crystal growth m diagrams, crystal defects, diffusion e,which will help students to understand es of solids. failure of materials with the objective of odifying and describing the mechanical

Course	Course Content			
Unit	Description	Weightage* (%)		
1.	<i>Nucleation and crystal growth processes</i> : Nucleation, Classical theory of nucleation : Gibb's – Thomson equation for vapour, melt and solution, Energy formation of nucleus, heterogeneous nucleation, Crystal growth techniques – Bridgman- basic process, Crystal pulling method , Vernueil flame fusion process, float zone process, solution growth: slow cooling process at low and high temperature, growth from gel, flux growth, direct vapour transport technique and chemical vapour transport technique, High pressure high temperature growth of diamond.	25%		
2.	 Phase equilibrium diagrams : Stability of phases and equilibria, liquid – solid transition, solid solutions, phase rule and phase equilibrium, cooling curves, solid solution equilibrium diagram, Lever rule, non-equilibrium cooling, Eutectic systems : components mutually soluble in liquid state and insoluble in the solid state, eutectic system with partial solubility in solid state, the Peritectic equilibrium diagram, layer type equilibrium diagrams. Radiation damage in materials : Radiation damage in solids and interactions with solids, differential cross section, total scattering cross-section, interaction mean free path of penetration depth, choice of differential cross section, damage by ionizing and other radiations. 	25%		
	ionizing radiation, damage by ionizing and other radiations.			

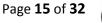
3.	Dislocation observation : surface method , decoration method, electron microscopy, X-ray diffraction topography, field ion microscopy, cross- slip, velocity of dislocations, ,forces on dislocation, forces between dislocations,Intersection of dislocations,movement of dislocations containing elementary jogs, composite jogs. <i>Diffusion mechanisms</i> : steady state diffusion and non-steady state diffusion, factors that influence diffusion : diffusing species and temperature, some applications of diffusion : measurement of diffusion coefficient, Carburizing and Decarburizing process in steel, random walk treatment of diffusion, Kirkendall effect, ionic conductivity.	25%
4.	<i>Failure of materials</i> : Fracture , ductile and brittle, stress concentration, fracture toughness, design using fracture mechanics, impact fracture testing, crack initiation and propagation, factors that affect fatigue life, Fatigue, cyclic stresses, the S-N curve, Creep- generalized creep behaviour, stress and temperature effects, data extrapolation method, Failure of an automobile rear axle, Hardness, Rockwell hardness tests, Brinell Hardness tests, Knoop and Vicker's microhardness tests.	25%

Teaching- Learning Methodology	Lectures using traditional blackboard teaching, Tutorials, class assignments as well as the ICT tools for effective delivery of the content.
--------------------------------------	---

Evalu	Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%	
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%	
3.	University Examination	70%	

Course Outcomes: Having completed this course, the learner will be able to

1.	Students will understand the basic concepts of crystal growth and methods by which crystalline materials can be synthesized.
2.	By knowing different states of material occurring at particular temperature across the phase boundary, students can apply these concepts to solve problems in the field of Materials Science / Material Engineering. They will also learn about how radiation damage whether ionizing or non-ionizing radiation can effect the properties of materials.


3.	It will help students to have a depth of the imperfections and diffusion mechanism in materials for any device fabrication.
4	It concentrates on the physics of deformation, failure of materials by fracture, fatigue and creep and hardness measurement.

Sugge	sted References:
Sr. No.	References
1.	Crystal growth: Processes and Methods, P. S. Raghavan and P. Ramasamy, KRU Publications, Kumbakonam, 2000.
2.	Materials Science and Engineering: An introduction, William D. Callister. Jr, John-Wiley and Sons, 2006.
3.	Crystal Growth Processes, J. C. Brice, Halsted Press, New York, 1986.
4.	The Physics of Engineering Solids, T. S. Hutchison and D.C. Baird, John Wiley and Sons Inc., 1968.
5.	The nature and properties of Engineering Materials, 3 rd Edition, Zbigniews. D. Jasterzzebski, John Wiley & Sons, 1987
6.	Introduction to Dislocation, D. Hull, Pergamon Press Ltd., 1969.
7.	Solid State Physics: Structure and Properties of Materials, M. A. Wahab, 2 nd Edition, Narosa Publishing House, New Delhi, 2007.
8.	Elements of Solid State Physics, J. P. Srivastava, Prentice Hall of India, 2001.
9.	Introduction to Solid State Physics, 7 th Edition, Charles Kittel, John Wiley & Sons, 1996.
10.	Principle of Solid State Physics, F. Levy, Academic press, 1968.
11.	Elementary Solid State Physics, M.A. Omar, Addison -Wesley Publication Company, 1975.
12.	Introduction to crystal growth principles and practice, H. L. Bhat, CRC Press, Taylor & Francis Group, New York, 2015.

On-line resources to be used if available as reference material

On-line Resources

 Nucleation <u>https://youtu.be/Odw6fGFC6dY</u> <u>https://youtu.be/Od5yT-17aK4</u>

- Bridgman <u>https://youtu.be/P5GMX9Cr22g</u>
- Czochralski <u>https://youtu.be/RdVTBIyf6kg</u>
- Verneuil <u>https://youtu.be/Qp0u0Vp2jQU</u>
- Floating zone <u>https://youtu.be/K4X9WsfgEPQ</u>
 Gel growth <u>https://youtu.be/y718aIMU1so</u>
- Gel growth <u>https://youtu.be/v7J8aJMJ1so</u>
- Hydrothermal growth <u>https://youtu.be/tLurHk8kYVg</u>
- Phase rule <u>https://youtu.be/erOKm7wbkJE</u>,
 Lever rule <u>https://youtu.be/Ub3VsIW6UM0</u>
- Lever rule <u>https://youtu.be/Ub3VsJW6UM0</u>
 Non aquilibrium apoling https://youtu.be/75 oF IBvVD0
- Non-equilibrium cooling <u>https://youtu.be/ZSoEJRyVPOk</u>
- Eutectic system <u>https://youtu.be/KfGq1-</u> <u>InJqY https://youtu.be/0i_W1X8</u> <u>cdMU https://youtu.be/w9iTLjiJ</u> <u>WIk https://youtu.be/GVK3gRA</u> <u>x-ZY</u>
 Peritectic https://youtu.be/P6WgQE3ZqFM
- Perifectic <u>https://youtu.be/P6wgQE52dFM</u>
 https://youtu.be/R5K7nXMVF1Y
 Layer type <u>https://youtu.be/UFJj-ad2Bv4</u>
- Defects in crystalline solids <u>https://nptel.ac.in/courses/113/106/113106075/</u>
- Fatigue failure https://freevideolectures.com/course/3470/advanced-marine-structures/8
 - Diffusion <u>https://nptel.ac.in/content/storage2/courses/112108150/pdf/Lecture_Notes/</u> <u>MLN_05.pdf</u>
- Creep <u>https://nptel.ac.in/courses/113/106/113106088/</u>
- Fracture <u>https://nptel.ac.in/courses/112/106/112106065/</u>
- •

Failure <u>https://nptel.ac.in/content/storage2/courses/112108150/pdf/PPTs/MTS_08_m.pdf</u>

Master of Science in Physics M. Sc. (Physics) Semester IV

Course Code	PS04EPHY53	Title of the Course	Signal Processing and Satellite Communication (EC)
Total Credits of the Course	04	Hours per Week	04

Course Objectives:	 Looking at the present scenario of communication systems, this paper is designed to cater the needs of imparting modern knowledge of communication systems. The students will be made aware of modulation techniques which are basics of electronic communication systems.
-----------------------	---

Course Content		
Unit	Description	Weightage* (%)
1.	Introduction to Communication Systems and Analog Modulation : Nature of communication systems, Signals in time and frequency- domains, Types of Modulation, Amplitude Modulation theory, Frequency spectrum of AM wave, Representation of AM, Power relation in AM wave, Current calculation, Modulation by several sine waves,	25%
	Frequency and Phase modulations, Spectra, Power distribution and transmission bandwidths, Single Side Band amplitude modulation.	
2.	Unit: 2 Generation of Analog Modulation: Generation of AM, Basic requirements and comparison of levels, Grid modulated Class C- Amplifier, Plate modulated class-c amplifier, Evolution and description of Single Side Band, Suppression of carrier, Effect of non-linear resistance on added signals, Balanced modulator, Suppression of unwanted side band, The Filter Method, Phase Shift Method and The Third Method	25%
	Introduction to frequency modulation and phase modulation: Mathematical representation of FM	
3.	Unit: 3 Digital, Microwave and Optical Communication Techniques : Types of Pulse Modulation Systems, Pulse Amplitude Modulation and sampling theorem, Pulse Code Modulation, Delta Modulation, Data communication systems - transmission speeds and bandwidths, Synchronisation, Types of synchronization, modems,	25%

Page **17** of **32**

	Digital modulation and demodulation: Frequency shift keying, Phase shift keying. Microwave repeaters, Geostationary satellites, Transponder and earth stations, Principles of multiple access systems- Frequency Division Multiplexing, Time Division Multiplexing, Optical fiber communication system.	
4.	 Unit: 4 Principles of Mobile Communication: Wireless mobile communication, Transceiver, Difference between repeater and transceiver, Cellular telephones-principle of operation, idea about cell structure, Interpretation of International Mobile Equipment Identity(IMEI) number, its importance, structure of IMEI number, significance of Luhn check digit and software version number. Global System for Mobile communication(GSM)- Definition, frequency range, Advantages, limitations, Operation of Code Division Multiple Access (CDMA), advantages, limitations, comparison between GSM and CDMA. 	25%

Teaching- Learning	Lectures using traditional blackboard teaching as well as the ICT tools for effective delivery of the content.
Methodology	

Evalı		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Course Outcomes:

- After systematic study of this paper the students will have ample knowledge of the processes involved in radio frequencies and microwave communication.
- > They will also understand important aspects related to mobile communication systems useful for job opportunities in open market.

Suggested References:

Page **18** of **32**

Sr. No.	References
1.	Electronic Communication: D. Roody and J. Coolen Prentice Hall.
	Introduction to Solid State Physics by Charles Kittel, John Wiley & Sons, 7th edition,1996.
2.	Electronic Communication Systems: G. Kennedy, Mc-Graw Hill.
3.	Electronic Communication Systems: F. R. Dungan, Delmar Publishers Inc.
4.	Microwave Principles:, H. J. Reich, J. G. Skalnik, P. F. Ordung and H. L. Krauss, East- West Press Modern Microwave Technology, V. F. Velley, Prentice Hall.
5.	Nanomaterials: An introduction to synthesis, properties and applications, Dieter Vollath, Wiley-VCH Verlag GmbH, 2008.

On-line resources to be used if available as reference material

On-line Resources

• Introduction to Communication Engineering:

https://nptel.ac.in/courses/117/102/117102059/

- Analog Modulation of Carriers, Amplitude Modulation, Angle Modulation, Single Side Band Modulation, Superheterodyne Receiver: https://nptel.ac.in/courses/117/102/117102059/
- Pulse Modulation Scheme:PWM, PPM https://nptel.ac.in/courses/117/102/117102059/
- Pulse Code Modulation; <u>https://nptel.ac.in/courses/117/102/117102059/</u>
- Mobile Wireless Communication: https://www.youtube.com/watch?v=4R1qHE0E8lE&t=27s

Course Code	PS04EPHY54	Title of the Course	Advanced Solid State Electronic Devices (EC)
Total Credits of the Course	04	Hours per Week	04

Couse Objectives:	This paper is designed to develop understanding of students in the area of various advanced electronic devices used in entire electronic industry.
	> The included advanced devices in this paper are the work horse of day to $\frac{1}{2}$
	day applications in all areas.

Course	e Content	
Unit	Description	Weightage* (%)
1.	Heterojunction Bipolar Transistors : BJT design limitations: Need for band tailoring and its methods, Hetrojunction bipolar transistor - Si based HBTs, GaAs/AIGaAs HBTs, InGaAs/InAlAs and InGaAs/InP HBTs, Techniques of channel isolation in field effect devices, JFET, MESFET : I-V characteristics, approximations used in I-V characteristics derivation, active and saturation regimes. Effects in real devices- Velocity field relations, Channel length modulation,	25%
2.	Advanced Field Effect Devices : Heterojunction FETs-Key motivations, Charge control model for MODFET, Current control in MODFET: Active and saturation regions, High frequency, high speed issues - Small signal characteristics, Equivalent circuit, Large signal analog applications and requirements of semiconductor parameters. Charge coupled devices, Advanced MOS devices-HMOS and SIMOX.	25%
3.	MOSFET: Metal Oxide Semiconductor capacitor, Accumulation, Depletion and Inversion regions, Capacitance-Voltage characteristics of the MOS structure, equivalent circuit of MOS capacitor, MOSFET, MOSFET structure, brief description of I-V characteristics, Depletion MOSFET and Enhancement MOSFET, Complementary MOSFETs, Important effects in long channel and short channel MOSFETs, High frequency issues.	25%
4.	Optical Detectors and Emitters: Optical absorption in semiconductors, photocurrent in a P-N diode, Photoconductive detector, P-I-N photodetector, Avalanche Photodetector, APD design issues,	25%

Materials for light emitting devices, Internal and external quantum efficiency, LED performance issues, Light-current characteristics, Spectral purity, Temporal response, Advanced LED structures, Hetrojunction LED, Edge emitting LED, Surface emitting LED.

Teaching- Learning Methodology	Lectures using traditional blackboard teaching as well as the ICT tools for effective delivery of the content.
Wienlouology	

Evalu	Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%	
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%	
3.	University Examination	70%	

Course Outcomes:

- After completion of this paper, the students will be able to understand the basic concepts involved in structure, operation and applications of all advanced devices used in present day semiconductor technology.
- The strengthened understanding of device physics will open ample opportunities for students in the semiconductor industry.

Sugges	sted References:
Sr. No.	References
1.	Semiconductor Devices - An introduction: Jasprit Singh, McGraw-Hill Inc.
2.	Physics of Semiconductors and their Heterostructures: Jasprit Singh, McGraw-Hill Inc.
3.	Semiconductor Optoelectronic Devices: Pallab Bhattacharya, Prentice Hall of India.

4.	Electronic Devices and Components: J. Seymore, Longman Scientific and Technical
	Publication.

On-line resources to be used if available as reference material

On-line Resources

- High Speed Devices and Circuits, Heterojunctions; https://nptel.ac.in/courses/117/106/117106089/
- MESFETs: I-V Characteristics, Velocity Field relation <u>https://nptel.ac.in/courses/117/106/117106089/</u>
- MODFET: https://www.youtube.com/watch?v=FHGopzr64XY
- MOSFET: <u>https://www.youtube.com/watch?v=MuBiC9yz2fc</u>
- Optical Sources and Detectors-I: <u>https://www.youtube.com/watch?v=fnIebfgEgW8</u>
- Optical Sources and Detectors-II: <u>https://www.youtube.com/watch?v=F1fanv9OsDM</u>

Course Code	PS04EPHY55	Title of the Course	Computer Programming in Python and Numerical Methods (CP)
Total Credits of the Course	04	Hours per Week	04

Course Objectives:	 Provide knowledge and training of Python computer programming language Train the students to design algorithms and write programs in Python for scientific computing
	 Impart knowledge of importrant numerical methods and its implementation in Python for solving science problems.

Course	e Content	
Unit	Description	Weightage* (%)
1.	Introduction to Python and its use in Science, The interactive Python pane, Python modules, Python interpreter, Script files and Programs, Comments, Simple Input & Output, Variables, Mathematical Operators, Lines in Python, Strings, Lists, Arrays and Dictionaries, Input and Output	25%
2.	Conditionals (if, elif, else etc.), Loops (for, while, etc.), List Comprehensions, Functions, Python functions, User-defined functions, Methods and Attributes SciPy, NumPy and MatPlotLib: Introduction and its preliminary applications	25%
3.	<i>Differential equations: Boundary-value and Eigenvalue problems</i> The shooting method, Linear equations and the SturmLiouville problem, Solution of one-dimensional Schrodinger equation, The Numerov algorithm, Green's function solution of boundary-value problem, Eigenvalues of the wave equation, The relaxation method, Ground water dynamics	25%

	Synabus with effect from the Academic Year 2022-2025	
4.	Data analytics for physics	25%
	Discrete Fourier transforms, fast Fourier transforms, noise reduction, spectral analysis for non-stationary signals, principal component analysis, fractal dimension determination,	

U	Lectures using traditional blackboard teaching as well as the ICT tools for effective delivery of the content. Hands on training in computer laboratory.
Learning	effective delivery of the content. Hands on training in computer

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Course Outcomes: Having completed this course, the learner will	
1.	Be able to write and execute programs in Python to solve basic computational physics problems.
2.	Get the skill of using different libraries, packages and modules for data plotting and visualization, subroutines for numerical calculations.
3.	Be able to write and execute programs in Python to solve basic computational physics problems using different numerical methods.

Sugges	sted References:
Sr. No.	References
1.	Python from the Very Beginning, J. Whitington, Coherent Press, 2020.
2.	Programming and Problem Solving with Python, A. N. Kamthane and A. A. Kamthane, McGraw Hill Education (India) Private Limited (2018).
3.	Guide to NumPy, T. E. Oliphant, Second edition, Creatspace Independent Publisher, (2015).
4.	Introduction to Python for Science, D. Pine, 2019
5.	Computational Physics With Python, E. Ayars, 2013.

6. Computational Problems for Physics: With Guided Solutions Using Pyth Landau, M. J. Páez, CRC Press, Taylor & Francis Group (2018).		Computational Problems for Physics: With Guided Solutions Using Python, R. H. Landau, M. J. Páez, CRC Press, Taylor & Francis Group (2018).	
I	7.	An Introduction to Computational Physics, T. Pang, Second Edition, Cambridge University Press (2006).	
	8.	Computational Physics Fortran Version, S. E. Koonin and D. E. Meredith, CRC Press, Taylor & Francis Group (2018).	

On-line resources to be used if available as reference material

On-line Resources	
A course on Computational Science and Engineering using	
Python <u>https://nptel.ac.in/courses/115/104/115104095/</u> Python Tutorial for	
Beginners <u>https://python.land/pyth</u> on-tutorial	
Python Tutorial https://www.w3schools.com/python/de	
<u>fault.asp</u>	
 A Beginners Guide to Python <u>https://wiki.python.org/moin/Beginner</u> 	
<u>sGuide</u>	

Course Code	PS04EPHY56	Title of the Course	Computational Physics-II (CP)
Total Credits of the Course	04	Hours per Week	04

Course	 Provide essential knowledge of advanced computer simulation methods
Objectives:	and tools used in computational physics for research.
	 Train the students to implement different computer simulation methods to study preliminary computational physics problems.

Course Content		
Unit	Description	Weightage* (%)
1.	<i>Monte Carlo Simulation</i> : Ensemble averages, The Metropolis algorithm (MA), Sampling in MA, updating the energy in MA, The Ising model, Example simulations of the Ising model, Monte Carlo for atomic systems, Simulations of atoms in the canonical (NVT) ensemble, Example calculations for "Lennard-Jonesium", Other ensembles, Time in a Monte Carlo simulation, Assessment of the Monte Carlo method, Uses of the Monte Carlo method in materials research	25%
2.	<i>Classical Molecular Dynamics (MD) Simulation</i> : Basics of molecular dynamics for atomic systems, Numerical integration of Newton's equations, Conservation laws, Examining the reliability of a simulation, Connection to thermodynamics, Initial conditions, Steps in an MD simulation, An example calculation, Potential cutoffs, Analysis of molecular dynamics simulations, "Lennard-Jonesium" as a model for materials, Spatial correlation functions, Time correlation functions, Velocity rescaling, Molecular dynamics in other ensembles, Accelerated dynamics, Limitations of molecular dynamics, Molecular dynamics in materials research	25%
3.	<i>Electronic structure Methods and Density Functional Theory</i> : Quantum mechanics of multi-electron systems, Early density functional theories, The Hohenberg-Kohn theorem, Kohn-Sham method, The exchange-correlation functional, Wave functions, Pseudopotentials, Use of density functional theory, Ab initio molecular dynamics, Car-Parinello simulation scheme.	25%

		Synabus with cheet from the Academic Tear 2022-2025		
ľ	4.	Genetic algorithm and programming	25%	
		Basic elements of a genetic algorithm, the Thomson problem, continuous		
		genetic algorithm, Other applications: molecules, clusters and solids,		
		genetic programming.		
		Biological Models: Population Dynamics & Plant Growth		

Teaching- Learning	Lectures using traditional blackboard teaching as well as the ICT tools for effective delivery of the content. Hands on training in computer lab.
Methodology	

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Cou	rse Outcomes: Having completed this course, the learner will
1.	Acquire the knowledge of various important computer simulation methods and tools used for research in materials science
2.	Equipped with the knowhows of the essential methodology and algorithm involved in the computer simulation techniques.
3.	Be able to execute preliminary computer simulation programs to study computational materials science problems.

Suggested References:		
Sr. No.	References	
1.	Introduction to Computational Materials Science : Fundamentals to Applications, R. Lesar, Cambridge University Press (2013)	
2.	An Introduction to Computational Physics, T. Pang, Second Edition, Cambridge University Press (2006).	
3.	Computational Problems for Physics : With Guided Solutions Using Python, R. H. Landau, M. J. Páez, CRC Press, Taylor & Francis Group (2018).	
4.	Computational Physics Fortran Version, S. E. Koonin and D. E. Meredith, CRC Press, Taylor & Francis Group (2018).	

5.	Computational Physics: Problem Solving with Computers, R. H. Landau, M. J. Páez, and C. C. Bordeianu, Second Edition, Wiley-VCH Verlag GmbH (2007).
6.	Computational Physics: Simulation of Classical and Quantum Systems, P. O. J. Scherer, Springer-Verlag Berlin Heidelberg (2010).

On-line resources to be used if available as reference material

Or	-line Resources
•	Computational Physics (Online course on Swayam Portal) By Prof. A. Chatterji and Prof.
	P. Ghosh, IISER
	Pune https://onlinecourses.nptel.ac.in/noc21_ph20/pre
	view
•	Introduction to Computational Thinking and Data Science (Online MIT Course) By Prof.
	E. Grimson, Prof. J. Guttag and Dr. Ana
	Bell https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-
	0002- introduction-to-computational-thinking-and-data-science-fall-
	2016/index.htm
•	Density Functional
	Theory http://www.ch.ic.ac.uk/harrison/Teaching/DFT_NA
	TO.pdf
	Toha

Т

Г

SARDAR PATEL UNIVERSITY Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

٦

Course Code	PS04EPHY57	Title of the Course	Bio-Mass, Other Systems and Energy Storage (EST)
Total Credits of the Course	04	Hours per Week	04

Course	e Content	
Unit	Description	Weightage* (%)
1.	Biomass conversion processes and MHD : direct combustion of biomass (incineration) thermo chemical conversion of biomass – biochemical conversion, Fermentation- ethanol gaseous fuels from biomass – applications of biomass energy conversion processes, introduction to the magnetohydrodynamics energy conversion – basic principle – segmented electrodes – description of typical open cycle MHD plant.	25%
2.	Design aspects of MHD and Fuel Cells : alternate MHD systems- technical particulars of conceptual MHD fundamental equations of MHD generation, introduction to the fuel cells and fuel cell power plants – advantages of fuel cell power sources – theory of electro-chemistry applied to fuel cells. Classification and types of fuel cells, fuels for fuel cells electrical circuit and performance characteristics of fuel cells.	25%
3.	Introduction to the energy storage systems : Energy storage systems for the electrical utility peak saving, pumped hydro energy storage plant, underground pumped hydro-compressed air energy storage. CASE with gas turbine peaking power plants, Huntor compressed air energy storage system with gas turbine power plant, battery energy storage systems, lead acid battery, Nickel-cadmium battery, advanced batteries superconducting magnet storage, advanced flywheel energy storage AFES.	25%
4.	Thermal energy storage and Hydro Energy Systems: Chemical reaction material energy storage, Hydrogen energy storage, Introduction to the hydro energy, Merits and demerits of the hydroenergy,	25%

Hydroenergy resources in India, Types of hydro-electric plant and energy conversion schemes, Terms and definitions, Generation description, Typical hydro-electric power plant, Hydro-electric turbines, Specific speeds of hydroturbines, Impulse turbine, Reaction turbine, Choice of hydro-turbine, speed control and hydrothermal coordination, Merits of hydro-turbines, Types of turbines for small hydro, classifications, Mini, micro, small hydro-electric projects, Runof river and storage plants, Environments aspects concerned with hydro power.

Teaching-	Lectures using traditional blackboard teaching as well as the ICT tools for
Learning	effective delivery of the content.
Methodology	

Evaluation Pattern			
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%	
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%	
3.	University Examination	70%	

Course Outcomes:

> By studying this paper the students will get an idea about production processes involved in production and applications of some non-conventional energy systems and energy storage.

Suggested References:			
Sr. No.	References		
1.	Energy Technology (Non conventional, Renewable and conventional): S. Rao and Dr. P. B. Perulkar		
2.	Solar Energy conversion, An introductory course: A. E. Dikon and J. D. Loslie		

3. Photoelectrochemical Solar Cells: Suresh Chandra Principles of Energy Conversion By Archie W. Cupl. Jr.

On-line resources to be used if available as reference material

On-line Resources

Biomass Basics: https://www.youtube.com/watch?v=F1fanv9OsDM
MHD Power
Generation http://www.digimat.in/nptel/courses/video/11210522 1/L44.html
Thermal Energy Storage Systems-Part-1: https://www.youtube.com/watch?v=0FSEKHc-COA
Hydroelectric Power: https://www.youtube.com/watch?v=i9yCpuiMze0

Т

SARDAR PATEL UNIVERSITY Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

Master of Science in Physics M. Sc. (Physics) Semester IV

Course Code	PS04EPHY58	Title of the Course	Nuclear Energy and Energy Strategies (EST)
Total Credits of the Course	04	Hours per Week	04

Course Objectives:	To cater the large scale energy need of the society, this paper is designed to enhance the knowledge of students in the area of nuclear energy and energy strategies.
-----------------------	---

Cours	Course Content		
Unit	Description	Weightage* (%)	
1.	Introduction to the nuclear energy : Historical background status and prospects nuclear energy application compared with coal, Fuels for nuclear fission reactor, Terms and definitions-nuclear fuel cycle-storage transportations. Nuclear fission and chain reaction, Moderators – energy from nuclear fission reactions, Uranium enrichment process – Nuclear reactor power plant, Fast breeder reactors, Boiling water reactor, pressurized heavy water reactor, and pressurized light water reactor Gas cooled reactor, Liquid metal fast breeder reactor, Nuclear waste management, Introduction to the nuclear fusion, Nuclear fusion reactions, Problems with nuclear fusion, Plasma confinement.	25%	
2.	Use of Plasma and Fossil Fules: Toroidal magnetic confinement of plasma-magnetic mirror confinement, Laser inertial confinement reactors, Fusion-fission hybrid, Environmental and safety with nuclear fusion, Compact toroids, Introduction to the environmental aspects of energy and pollution control, terms and definitions. Pollution from use of energy, Combustion products of fossil fuels, Particulate matter, Electro-static precipitator (ESP), Fabric filter and bag house, Carbon dioxide, Green house effect and global warming, Emission of carbon monoxide, Pollution by sulphur dioxide and hydrogen sulphide, Emission of nitrogen oxides, Acid rains, Acid snow, Acidic fog and dry acidic deposit, FGD and SCR systems for cleaning flue gases.	25%	
3.	Hydrogen and Methanol based System: Introduction to the hydrogen and methanol fuels, Applications of hydrogen, Productions of hydrogen, Storage and transportation of hydrogen, Methanol, Energy strategies, Energy management and energy conservation measures (Over view),	25%	

Page **34** of **32**

	Efficiency of the energy converters, Primary resources of energy, National energy strategy of India, Essential steps in energy planning, Energy planning in India.	
4.	Energy Strategies: Growth of energy sector of India/world, issues on global warming and climate change, Planning in electrical power sector and the objectives in energy planning, Growth of India's energy sector, Petroleum sector in India, Planning of coal in India, Energy conservation Opportunities (ECOs) and Energy Conservation measures (ECMs), ECOs in electrical power supply sector, ECOs in transportation, ECOs in residential and commercial sectors, ECOs in industry sector, Energy management activities, Economic benefits, Nonconventional renewable sources of energy, Energy audit.	25%

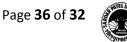
Teaching- Learning	Lectures using traditional blackboard teaching as well as the ICT tools for effective delivery of the content.
Methodology	

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Course Outcomes:

Students will be able to understand processes involved in production, application and strategies of high energy systems based on nuclear processes.

Suggested References:		
Sr. No.	References	
1.	Energy Technology (Non conventional, Renewable and conventional): S. Rao and Dr. P. B. Perulkar	


2.	Solar Energy conversion, An introductory course: A. E. Dikon and J. D. Loslie
3.	Photoelectrochemical Solar Cells: Suresh Chandra
4.	Principles of Energy Conversion: Archie W. Cupl. Jr.

On-line resources to be used if available as reference material

On-line Resources

- Fundamentals of Nuclear Power Generation: <u>https://nptel.ac.in/courses/112/103/112103243/</u>
- Nuclear Reactors: <u>https://www.youtube.com/watch?v=7U_CVtBCjaM</u>
- Introduction and overview of fuel cell: https://nptel.ac.in/courses/103/102/103102015/
- Energy Scenario and Basic Concepts: https://www.youtube.com/watch?v=O8zMD1eCbq0
