

(M.Sc.) (Mathematics)

(Master of Science) (Mathematics) Semester (I)

Course Code	PS01CMTH55	Title of the	ODE & Special Functions
		Course	
Total Credits	04	Hours per	04
of the Course	04	Week	

Course	1. Students will learn the series solution of differential equations.	
Objectives:	2. Students become aware about some well-known differential equations like Bessel, Legendre and Gauss hypergeometric differential equations.	
	3. They will learn various methods for solving Pfaffian differential equations in three variables.	

Course	Course Content		
Unit	Description	Weightage* (%)	
1.	Interval of convergence of Power series, real valued analytic function, second order linear homogeneous differential equation: classification of singularities, series solution: near ordinary point.	25	
2.	Series solution near point at infinity and regular singular point using Frobenius Theorem, a quick review of gamma function, Bessel's differential function, Bessel's function of first kind and its properties, Fourier-Bessel expansion theorem (statement only) and examples.	25	
3.	Legendre's differential equation, Legendre polynomial and its properties, Rodrigue's formula, Fourier-Legendre's expansion theorem (statement only) and examples, Gauss' hypergeometric differential equation Gauss' hypergeometric function and its properties.	25	
4.	Pfaffian differential equation: homogeneous method, Natani's method for finding solution, Picard's method of successive approximations, Picard's theorem.	25	

Teaching-Learning	Classroom teaching.
Methodology	

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Cou	Course Outcomes: Having completed this course, the learner will be able to	
1.	find series solution of second-order linear homogeneous ordinary differential equations near ordinary and regular singular points which might be helpful to understand the nature of the solution.	
2.	understand some well-known differential equations which are helpful to understand many mathematical models in nature.	
3.	solve Pffafian differential equations in three variables.	

Sugge	Suggested References:	
Sr. No.	References	
1.	Simmons G. F., Differential Equations with Applications and Historical Notes, (Second Edition), McGraw-Hill International Editions, 1991.	
2.	Sneddon I. N., Elements of Partial Differential Equations, McGraw-Hill Publ. Co., 1957.	
3.	Raisinghania M. D., Advanced Differential Equations, (Sixth Revised Edition), S. Chand, 2013.	
4.	Rabenstein A. L., Introduction to Ordinary Differential Equations, Academic Press, 1966	

On-line resources to be used if available as reference material

On-line Resources
