

SARDAR PATEL UNIVERSITY Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2021-2022

(Master of Science) (Mathematics)

(M.Sc.) (Mathematics) Semester (I)

Course Code		PS01CMTH53	Title of the Course	Functions of Several Real Variables	
Total Credits of the Course		04	Hours per Week	04 hours	
Course Objectives:		 This is also called a course on multivariable calculus. Students will learn calculus of R^m-valued, several real variable functions. They will learn limits, continuity, three types of derivatives, Mean Value Theorem, different types of boundary points, etc. 			
Course	Content				
Unit	Descript	tion			Weightage* (%)
1.	Euclidea Limits a Example Continu Continu Continu Implicit Linear m Matrix r	Limits and Continuity25%Euclidean space \mathbb{R}^n and its basic properties;25%Limits and continuity of functions $f: \mathbb{R}^n \to \mathbb{R}^m$;25%Examples and basic results on limit and continuity;25%Continuity and oscillation;25%Continuity and convexity;25%Continuity and Intermediate Value Property;25%Implicit Function Theorem (without proof);25%Linear maps $T: \mathbb{R}^n \to \mathbb{R}^m$;25%Matrix representation of linear maps;25%Dual space of \mathbb{R}^n and its standard basis.25%		25%	
2.	New def (Total or Uniquer Example Increme Classica	erivation finition of derivation of r Full) derivation Df(a ness of derivation and es and basic results on nt Lemma and its appl l version of Implicit F n Theorem.) of $f : R^n \rightarrow R^m$ at the Chain rule; total derivation; lications;		25%
3.	Partial d The Gra Higher o Mixed p Rectang Rectang Jacobian Sufficien Directio	and Directional Deri lerivatives $D_i f(a)$ of f dient $\nabla f(x_0, y_0)$; ordered partial derivatives; ular Rolle's Theorem; ular Mean Value Theorem n matrix f'(a) of f : R ⁿ nt condition for different nal derivative, its example among continuity and	: $\mathbb{R}^n \to \mathbb{R}$ at a point ives; $\to \mathbb{R}^m$ at a point a; entiability. nples and basic pr	operties;	25%

4.	Applications	25%
	Classical Bivariate Mean Value Theorem;	
	Classical Bivariate Taylor Theorem;	
	Monotonicity and convexity;	
	Lagrange Multiplier Theorem;	
	Boundary points and critical points;	
	Local extrema and saddle points;	
	Discriminant test.	

Teaching-	Classroom teaching, Presentation by students, Supply of information about
0	online resources
Methodology	

Evalu	Evaluation Pattern	
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Quizzes, Assignments, and Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Cou	Course Outcomes: Having completed this course, student will be able to		
1.	learn several classical theorems of calculus for multivariable functions.		
2.	apply the theory of multivariable functions arising in several branches of mathematical sciences.		

Suggested References:		
Sr. No.	References	
1.	Ghorpade Sudhir R., and Limaye Balmohan V., A Course in Multivariable Calculus and Analysis, Springer, 2010.	
2.	Rudin W., Principles of Mathematical Analysis, (Third Edition), Tata McGraw-Hill Publ., New Delhi, 1983.	
3.	Kantorovitz S., Several Real Variables, Springer, 2016	
On-line 1	resources to be used if available as reference material	
On-line l	Resources	
