

SARDAR PATEL UNIVERSITY Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2021-2022

(Master of Science) (Mathematics)

(M.Sc.) (Mathematics) Semester (I)

Course Code	PS01CMTH52	Title of the Course	Topology I
Total Credits of the Course	04	Hours per Week	04
Course Objectives:	 To provide knowledge of the point set topology and understand the significance of topology and metric spaces. To acquaint students with homeomorphism and some topological properties like connectedness, compactness, etc. 		

Cours	Course Content		
Unit	Description	Weightage* (%)	
1.	Topological spaces, basis, subbasis, the product topology on $X \times Y$, the subspace topology, closed sets, closure and interior, limit points, boundary of a set.	25	
2.	Hausdorff spaces, convergent sequence, T_1 -space, Continuous functions, homeomorphisms, constructing continuous functions, pasting lemma, metric topology, metrizable space, diameter and bounded sets, bounded metric \overline{d} (excluding norm), continuity in metrizable spaces, the sequence lemma, first countability axiom.	25	
3.	Connected spaces, connected subspaces of the real line, connected components, compact spaces, finite intersection property, Heine-Borel theorem for real line, second countable spaces, separable spaces.	25	
4.	Regular spaces, Normal spaces, Urysohn's Lemma (statement only), Tietze's Extension Theorem (statement only), Complete metric spaces, Cantor's intersection theorem, Baire's category theorem for complete metric spaces.	25	

Teach Learn Metho	0	Classroom teaching, problem solving, independent reading	
Evalu	ation Pattern	1	
Sr. No.	Details of t	he Evaluation	Weightage
1.	Internal W	ritten / Practical Examination (As per CBCS R.6.8.3)	15%

2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Cou	Course Outcomes: Having completed this course, the learner will be able to	
1.	Understand the concept of topological spaces, bases, sub-bases, open sets, closed sets, limit points, closure, interior, boundary.	
2.	Understand the separation axioms, metrizable spaces, first and second countability axioms among various spaces.	
3.	Classify certain topological spaces based on topological properties like connected and compactness.	
4.	Prepare for studying advanced course on algebraic topology and other research level courses on Topology.	

Suggested References:	
Sr. No.	References
1.	Munkres, J., Topology: A First Course, (Second Edition), Prentice Hall of India Pvt. Ltd. New Delhi, 2003.
2.	Simmons G.F., Introduction to Topology and Modern Analysis, McGraw-Hill Co., Tokyo, 1963.
3.	Willard S., General Topology, Dover Publication, 2004.
4.	Kelley J., General Topology, Graduate Texts in Mathematics, Springer-Verlag, 1975.

On-line resources to be used if available as reference material

Dinesh Karia, Point Set Topology An Experience of a Teacher, Open Mathematics Notes Series of the American Mathematical Society, November 2020. https://www.ams.org/open-math-notes/omn-view-listing?listingId=110864
