

Methodology

SARDAR PATEL UNIVERSITY Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2021-2022

Master of Science – Materials Science

(M.Sc.)(Materials Science) Semester -II

Course Code	PS02CMTS53	Title of the Course	Microstructure Control and Metallic Processing	
Total Credits of the Course	4	Hours per Week	4	

	 To strengthen the knowledge on metallic materials To get idea on application part of advanced metallurgy in materials science
--	--

Course Content			
Unit	Descriptio	on	Weightage* (%)
1.	Metals and extractive metallurgy, Deformation, Strain Hardening, Annealing, Cold and Hot working, Residual stresses, Dislocation multiplication, Deformation & bonding process, Superplastic forming, Solidification and grain size strengthening, Microstructure and its relation to the properties. Homogeneous and heterogeneous nucleation, Growth, types of growth, Solidification time, Casting, Solidification defects, Control of casting structure, Solidification and metal joining		25
2.	Rothery's Isomorphe Solidificat	the Unary phase Diagram, Solubility and solutions, Hume- rules of solidsolubility, Solid solution strengthening, bus phase diagram, Strength and phase diagram, tion of solid solution alloys, Equilibrium and non m solidification, Segregation, Castability	25
3.	Principles of dispersion strengthening, Intermetallic compounds, Three phase reactions, Eutectic phase diagram, Eutectic system, Peritectic reactions, Monotectic reaction, Ternary phase diagram, Nucleation and growth in solid state reactions, Alloys strengthening by exceeding solubility limit. Age hardening or precipitation hardening. Nucleation & growth in solid state reaction, Eutectoid reaction, Control of eutectoid reactions, Age hardening, G.P. Zones, controlling the transformation, Heat treatments		25
4.	Fe-Fe ₃ C phase diagram, pearlite, bainite, martensite, cementite, Heat treatments processes, Jominy test, Surface treatments, Classification of steels and their applications. Aluminium alloys, Magnesium alloys, Copper alloys, Nickel, Cobalt, Zinc alloys, Titanium alloys, Refractory metals25		25
Teaching- Learning Group discussion/ Panel/Presentation			

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Cou	Course Outcomes: Having completed this course, the learner will be able to	
1.	Apply knowledge on microstructure and processing concepts of metals specifically.	
2.	This can be very helpful to express ideas for relevant industrial sectors.	
3.	Students will have many job opportunities and career growth as leading metal/alloys manufacturing firms are in India.	

Sugges	Suggested References:	
Sr. No.	References	
1.	Askeland, D.R., Fulay P. R. & Wright W. J. (2010). <i>The Science and Engineering of Materials</i> . Cengage Learning, Stamford, CT, USA.	
2.	Kodgire, V. D. (2011). Materials Science & Metallurgy. Everest Publishing House.	
3.	Raghavan, V. (2015). <i>Physical metallurgy: principles and practice</i> . PHI Learning Pvt. Ltd	
4.	Chanda, M. (1981). <i>Science of Engineering Materials: Volume 2 Materials</i> . Macmillan International Higher Education.	
5.	Callister, W. D., & Rethwisch, D. G. (2018). <i>Materials science and engineering: an introduction</i> (Vol. 9). New York: Wiley.	

SARDAR PATEL UNIVERSITY Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2021-2022

On-line resources to be used if available as reference material

On-line Resources

https://nptel.ac.in/courses/113/104/113104068/

 $https://web.iit.edu/sites/web/files/departments/academic-affairs/academic-resource-center/pdfs/Strengthening_Mechanisms_Workshop.pdf$
