

SARDAR PATEL UNIVERSITY Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2021-2022

Master of Science – Materials Science

(M.Sc.)(Materials Science) Semester -I

Course Code	PS01CMTS52	Title of the Course	Interfacial Aspect of Materials Science
Total Credits of the Course	4	Hours per Week	4 hrs

Course	1. To enhance knowledge of surface science
Objectives:	2. To provide fundamental information on materials interfacial phenomena

Course	Course Content		
Unit	Description	Weightage* (%)	
1.	Surface of materials, Interface, Phase, Interphase, Surface energy and surface tension, Factors affecting surface tension, Structure of materials, Levels of structure and surface modification-etching, Structural evolution of materials, Polishing, Grinding, Surface morphology and topography, Surface roughness and measurement, Surface chemistry, Surface active agents-surfactants, Classifications of surfactants, Hydrophilic and hydrophobic materials, Contact angle	25	
2.	Adhesion science, Definition of terms, Adhesion between two dry solids, Adsorption forces at solid surfaces, Luting agent, Cold and Hot gun adhesive, Methods of achieving surface contact, Liquid-solid interface, Laplace law, Young equation, Wetting characteristics, Electrostatic theory of adhesion, Mechanical theory of adhesion, Diffusion theory of adhesion, Weak boundary layers	25	
3.	Brief history, Tribology, Friction, Laws of friction and their interpretation, Wear of materials including metals, ceramics, polymers and their testing. Types of wear, Influence of environmental aspects. Archard wear law, Beneficial wear. Lubrication, Lubricants, boundary and hydrodynamic theory, Effect of additive and viscosity on surface protection, Lubrication at low and high temperatures, Theory of lubrications	25	
4.	Adsorption, desorption, adsorption of gases by solids, physical adsorption experimental methods, Langmuir, BET and other theories- surface area, pore size and pore volume, Isotherms, Physisorption and Chemisorption, Adsorbate and adsorbent, Catalyst, Types of catalysts, Materials Science and catalysis, Role of different materials for catalysis, Turn over number, Nanocatalyst, Applications of catalysts	25	

Teaching-	Group discussion/ Panel/Presentation
Learning	
Methodology	

Evalu	Evaluation Pattern	
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Cou	Course Outcomes: Having completed this course, the learner will be able to	
1.	Apply knowledge for adhesion, adsorption and tribology fields.	
2.	Thorough knowledge in the subject can enhance student's ability in the field of surface science of different materials.	
3.	Get the conceptual information on texture properties	

Suggested References:	
Sr. No.	References
1.	Packham, D. E. (2005). <i>In Handbook of adhesion second edition</i> . John Wiley & Sons: West Sussex, England.
2.	Askeland, D.R., Fulay P. R. & Wright W. J. (2010). <i>The Science and Engineering of Materials</i> . Cengage Learning, Stamford, CT, USA.
3.	Pizzi, A., & Mittal, K. L. (Eds.). (2017). <i>Handbook of adhesive technology</i> . CRC press.
4.	Viswanathan, B. (2002) Catalysis: Principles and Applications. CRC Press.
5.	Callister, W. D., & Rethwisch, D. G. (2018). <i>Materials science and engineering: an introduction</i> (Vol. 9). New York: Wiley.
6.	Goodwin, J. (2009). Colloids and interfaces with surfactants and polymers. John

	Wiley & Sons.
7.	Raghavan, V. (2004) Materials Science and Engineering, PHI Learning.
8.	Miyoshi, K. (Ed.). (2019). Solid lubrication fundamentals and applications. CRC Press.
9.	Kemeny, G. (1984). <i>Surface analysis of high temperature materials: Chemistry and topography.</i> London and New York, Elsevier Applied Science Publishers, 1984, 181.

On-line resources to be used if available as reference material

On-line Resources

 $https://www.micromeritics.com/Repository/Files/intro_to_chemical_adsorption.pdf$

https://nptel.ac.in/content/storage2/courses/112108150/pdf/Lecture_Notes/MLN_01.pdf

https://nptel.ac.in/courses/112/102/112102015/

https://www.nios.ac.in/media/documents/313courseE/L17.pdf
