Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023 Master of Science, Industrial Chemistry M.Sc. Industrial Chemistry, Semester - IV

Course Code	PS04CICH51	Title of the Course	Energy
			Technology
Total Credits of	4	Hours Per Week	4
the Course			

Course	To provide an idea of the challenges in the field of energy
Objectives:	management and to provide a perspective on energy technology.
	Students will learn the systems dimensions of the energy prolems
	and its historical perspective on energy technology and system
	development. For different types of energy sources utilization in
	industries, the procedure of power generation, transportation along
	with conventional and advanced application in different sectors
	should be known by the students. This subject will guide students in
	the same direction.

Course Content				
Unit	Description	Weightage*		
		(%)		
1.	(a) Solar Energy	25%		
	Solan constatn, solar radiation & related terms, measurement			
	of solar radiation, solar energy collectors- flat plate collector,			

		air collector, collectors with porous absorbes, concentrating	
		collectors, applications & advantages of various collectors,	
		selective absorber coatings, solar energy storage systems	
		(thermal electrical, chemical & mechanicla), solar pond,	
		applications of solar energy.	
		(b) Wind Energy	
		Basic principles, power in wind, force on blades & turbines,	
		wind energy conversion, site selection, basic componets of	
		wind energy conversion system (WECS), classification of	
		WECS, wind energy collectors, applications of wind energy.	
	2.	(a) Geothermal Energy	25%
		Geothermal resources, hydrothermal resources, liquid	
		dominated systems, geo pressured resources, petro thermal	
		systems, magma resources, energy conservation &	
		comparison with other resources, applications of geothermal	
		energy.	
		(b) Nuclear Energy	
		Fission, fusion, fuel for nuclear fission reactor (exploration,	
		mining, milling, concentrating, refining, enrichment, fuel	
		fabrication, fuel use, reprocessing, waste disposal), storage &	
		transportation, fast & slow neutrons, multiplication factors &	
		reactor control, uranium enrichment process, nuclear reactor	
		power plant, fast breeder reactor, boiling water reactor,	
		pressurised heavy & light water reactor.	
I			

3.	(a) Energy From Oceans	25%
	OTEC, methods (open cycle & close cycle) energy from	
	tides, components of tidal power plants, operation, methods	
	of utilization of tidal energy, storage, ocean waves, wave	
	energy conversion devises.	
	(b) Energy from Biomass	
	Types of biogas plants construction details, applications	
	biogas from plant wastes, thermal gasification of biomass,	
	properties & utilization of bigras.	
4.	Fuels and Fuel Cell	25%
	(a) Fuels	
	Wood & charcoal, peat, lignite, sub-bituminous &	
	bituminous coals, semi anthracite and anthracite coals,	
	cannel & bighead coal, origin of coal, composition of coal,	
	analysis & properties of coal gasification & liquefaction of	
	solid fuels.	
	(b) Fuel Cell	
	Introduction, hydrogen- oxygen fuel cell, ion exchange	
	membrane cell, fossil fuel cell, molten carbonate cell,	
	advantages & disadvantages, conversion efficiency,	
	polarization, type of electrodes, applications of fuel cells.	

Teaching	To meet the effective teaching and the learning requirements,
Learning	teaching-learning methodology comprises classroom teaching,
Methodology:-	use of e-resources, library books, encouraging students to
	participate in seminars, presentation by students, assigning work
	based upon subject requirements.

Evaluation Pattern				
Sr.	Details of the Evaluation	Weightage*		
No.		(%)		
1.	Internal Written/ Practical Examination (As per CBCS R	15%		
	6.8.3)			
2.	Internal Continuous Assessment in the form of Practical,	15%		
	Viva- Voce, Quizzes, Seminars, Assignments, Attendance			
	(As per CBCS R. 6.8.3)			
3.	University Examination	70%		

Course	Course Outcomes: having completed this course, the learner will be able to		
	After learning the course the students should be able:		
1.	To make students aware about all the energy sources avaialable and the		
	ways to turn it into power.		
2.	To understand the principles behind different non covnentional energy		
	sources.		
3.	To make student understand the global scenario of energy sector and to		
	work on better economical solutions of it.		
4.	To utilize the renewable energy in problem solwing where conventional		
	energy are not fruitful and reqire replacement.		
5.	To understand the design and applications of power generating devices		
	using renewable energy sources as per industrial requirements		

Sr. No.	References
1.	Energy sources 2nd Ed. by G.D. Raj, Khanna Publications, New Delhi
2.	Fuels & combustion by Samir Sarkar, Orient Longmans (1974)
3.	Solar Energy by Sukatame, Tata McGraw Hill, New Delhi.
4.	Energy Technology by Rao & Parulaker

Online- Resources

On-line Resources:- From time to time are many online resources, including websites, databases, e-books, bibliographies and platforms that offer educational videos, lectures on a range of topics can be suggested or displayed tot he students.

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25)

Syllabus with effect from the Academic Year 2022-2023

Master of Science, Industrial Chemistry

Course Code	PS04CICH52	Title of the Course	Spectroscopy- II
Total Credits of	4	Hours Per Week	4
the Course			

Course	1.	Know how nuclear spins are affected by a magnetic field, &
Objectives:		be able to explain what happens when radiofrequency
		radiation is absorbed.
	2.	Be able to predict the splitting pattern in the NMR & CMR
		signal expected from a compound given its structure.
	3.	Be able to predict the fragmentation patterns expected to arise
		in the mass specturm of alkanes, alkyl, halides, ethers,
		alcohols & ketones.
	4.	Be able to use the mass specturm of a compound to find the
		molecules mass & to help identify the structure of a
		compound.
	5.	Provide students with a basic under standing of the design,
		operation & control of an HPLC system.
	1	

Course Content				
Unit	Description	Weightage*		
		(%)		
1.	Nuclear Magnetic Resonance (NMR) Spectroscopy:-	25%		
	Principles of NMR spectroscopy, nucler spin states, nuclear			
	magnetic moments, absorption of energy, chemical shift &			
	its measurement shilding & deshilding of protons,			
	anisotropy, chemical shift & chemical equivalence, integrals,			
	spin-psin, splitting, N+1 rule, mechanism of coupling &			
	cooling constant, presentation of spectra, magnetic			
	equivalence, allylic coupling, exchangeable protons,			
	Interpretation of NMR spectra of simple organic compounds			
	effect of enantiotropy, diastereotopic protons, karplus			
	curves- variation of coupling constant with dihedral angles.			
	Techniques of simplifying NMR. Spectra, doble resonance,			
	shift reagents & deputation.			
2.	Carbon - 13 NMR Spectroscopy:-	25%		
	Carbon-13 nucleus, operating frequency, carbon-13 chemical			
	shifts & their calculation, spin-spin coupling, proton-			
	coupled, proton- decoupled & off resonance carbon spectra.			
	use of 13c Sepctra- differentiating stereoisomers, nuclear			
	overhauser effect. 13 C Dept Spectra- Dept Spectra -			
	Differentiation in primary, secondary And Tertiary carbons			
	By Dept-45, Dept-90, Dept-135 Spectra.			

3.	Mass Spectroscopy:-	25%
	Basic Principles, interpretation of mass spectra, molecular	
	ions, metastable ions & isotopes ion, ion abundances	
	fragmentation process representation of fragmentation, basic	
	fragmentation types & rules. Malafferty rearrangement.	
	Fragmentation of organic compounds with respect to their	
	structure determination associated with functional groups-	
	alkanes, alkene cycloalkanes, aromatic hydrocarbons,	
	Halides, alcohols, phenols, ethers, aldehydes, ketones,	
	carboxylic acids esters, amides, acid chlorides, nitro	
	compounds & amine, retro Diels- Alder Fragmentation &	
	Nitrogen rule.	
4.	High Performance Liquid chromatography (HPLC)	25%
	Principle, instrumentation, identification of peaks, effect of	
	temperature & packing material, types of HPLC: partion,	
	adsorption, ionexchange, size-exclusion or gel derivatization	
	in HPLC: Post & Pre coloumns, applications.	

Teaching	To meet the effective teaching & the learning requirements
Learning	teaching learning methodology comprises classroom teaching use
Methodology:-	of e-resources, library books, IT tools, encouraging students to
	participate in seminars/ workshops, presentation by students
	assigning work based upon subject requirement etc.

Evaluation Pattern				
Sr.	Details of the Evaluation	Weightage*		
No.		(%)		
1.	Internal Written/ Practical Examination (As per CBCS R	15%		
	6.8.3)			
2.	Internal Continuous Assessment in the form of Practical,	15%		
	Viva- Voce, Quizzes, Seminars, Assignments, Attendance			
	(As per CBCS R. 6.8.3)			
3.	University Examination	70%		

Course	e Outcomes: having completed this course, the learner will be able to
1.	Relate NMR & CMR parameters such as chemical shift, coupling constant
	etc.
2.	The ability to investigate & determine the structure of typical organic
	chemical compounds using suitable NMR & CMR spectra.
3.	Explain the theory behind mass spectroscopy.
4.	Describe how ionization of molecules can take place.
5.	Compare different technologies & applications of HPLC.

Sr.	References
No.	
1.	"Spectroscopic methods in organic chemistry" D.H. Williams & Ian
	Fleming.
2.	"Organic mass spectroscopy", K.G. Das & E.P. James, Oxford & IBH
	Publishing Co.

3.	"Spectroscopy" Pragati Prakashan by H.Kaur.
4.	Introduction to Spectroscopy D.L. Pavia, G.M. Lampman & G.S. Kriz, 3rd
	Edition (Thomson Books/ Cole)
5.	Spectroscopic methods in organic chemistry, D.H. Williams. & I.Fleming
	4th Edution. (McGraw-Hill Book Company)
6.	Chromatography: Basic Principles, Sample Preparations & Related
	Methods by Elsa Lundanes, Leon. Reubsaed, Type Greibrok, John. Willey
	& Soncs.
7.	Principles & Practicies of chromatography by R.P.W. Scott, Library for
	Science.
8.	Practical HPLC Method Development By Lloyd R. Snyder, Wiley-
	Interscience.
9.	Organic Analytical Chemistry Theory & Practice Jag Mohan, Narosa
	Publishing House 2003.
10.	Spectrophotometric Identificationof Organic Compounds 6th Ed. John
	Wiley & Sons, Inc, New York, 2004.

Online- Resources

On-line Resources:- From time to time are many online resources, including websites, databases, e-books, bibliographies and platforms that offer educational videos, lectures on a range of topics can be suggested or displayed tot he students.

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25)

Syllabus with effect from the Academic Year 2022-2023

Master of Science, Industrial Chemistry

Course Code	PS04CICH53	Title of the Course	Analytical
			Chemistry
Total Credits of	4	Hours Per Week	4
the Course			

1.	One	will	be	able	to	understand	different	techniques	of
	analy	sis.							
2.	Diffe	rent t	ypes	of ch	ron	atographic te	echniques	are covered.	
3.	Able	to pe	rfori	n elec	troa	nalysis of ch	emical.		
4.	Learr	ning c	of ad	vance	d in	strumental te	chniques.		
	1. 2. 3. 4.	 One analy Diffe Able Learr 	 One will analysis. Different t Able to per Learning of 	 One will be analysis. Different types Able to perform Learning of ad 	 One will be able analysis. Different types of ch Able to perform elec Learning of advance 	 One will be able to analysis. Different types of chrom Able to perform electroa Learning of advanced in 	 One will be able to understand analysis. Different types of chromatographic te Able to perform electroanalysis of ch Learning of advanced instrumental te 	 One will be able to understand different analysis. Different types of chromatographic techniques Able to perform electroanalysis of chemical. Learning of advanced instrumental techniques. 	 One will be able to understand different techniques analysis. Different types of chromatographic techniques are covered. Able to perform electroanalysis of chemical. Learning of advanced instrumental techniques.

Cours	Course Content			
Unit	Description	Weightage*		
		(%)		
1.	Titration techniques	25%		
	Precipitation phenomena: Precipitation from homogeneous			
	solutions, organic precipitants in inorganic analysis. Solvent			
	extraction of metal ions, nature of extractant, distribution			
	law, partition coefficients, types of extractions and			

	applications. Theories of redox indicators, titration curves,	
	feasibility of redox titrations. Chelometric titrations-titration	
	curves with EDTA, feasibility of EDTA titrations, selective	
	masking and demasking techniques, industrial applications	
	of masking.	
2.	UNIT II Chromatography	25%
	Chromatographic Techniques:	
	Principles, classifications and theory of chromatographic	
	separations.	
	Gas Chromatography: Principles, columns, detectors-TCD,	
	FID, ECD and column efficiency, capacity factors,	
	resolution. Practical aspects of GC-Hypernated techniques.	
	Liquid Chromatography HPLC: Principles, equipment,	
	columns, detectors, choice of column, materials GC, GCMS	
	and LCMS.	
	Ion exchange chromatography: Structures of resins,	
	selectivity, capacity of resins, ion exchange equilibria,	
	applications-removal of interfering ions, concentration and	
	recovery of traces, anion and cation separations and	
	application for the separation of lanthanides and actinides.	
	Techniques of column chromatography and size exclusion	
	chromatography.	
	Thin layer chromatography, efficiency of TL plates,	
	selection of stationary and mobile phases. Qualitative and	
	quantitative analysis	
	Paper chromatography: Theory and principle. Techniques:	

one, two- dimensional and circular paper chromatography.	
Mechanism of separation, structure of cellulose and types of	•
paper. Methodology- Factors affecting Rf values	
Advantages and applications.	
3. Electroanalytical Techniques	25%
Introduction, theory, principle, methodology, instrumentation	
and application of the following techniques: Conductometry	
Potentiometry, Colometry, Voltammetry.	
Fluorometry and Phosphorimetry:	
Introduction fluorescence and phosphorescene, factors	
affecting fluorescence and phosphorescence, internal	
conversion intersystem crossing (radiationless proceses)	
quenching theory, relatiponship between intensity of	•
fluorescence and concentration, instrumentation- basic	
difference in the measurement of fluorescence and	
phosphorescence, spectrofluorometers, advantages.	
limitations and precautions.	
4. Advanced instrumental techniques:	25%
Spectrophotometry, atomic spectroscopy	
Thermal Analysis:- T.G, DTA and DSC- Principles and	
applications.	
X-ray differaction techniques- Powder and single crystal	
XRD, Principal applications.	

Teaching	We have forged over traditional and some of the innovative
Learning	approaches as teaching learning methodologies such as direct
Methodology:-	instructions, flipped class rooms, class room discussion unit based
	quiz, problem solving unit activities student presentation etc.
	This method tends to increase the self confidence among the
	students, increase the ability of providing and convincing.

Evaluation Pattern			
Sr.	Details of the Evaluation	Weightage*	
No.		(%)	
1.	Internal Written/ Practical Examination (As per CBCS R	15%	
	6.8.3)		
2.	Internal Continuous Assessment in the form of Practical,	15%	
	Viva- Voce, Quizzes, Seminars, Assignments, Attendance		
	(As per CBCS R. 6.8.3)		
3.	University Examination	70%	

Cours	e Outcomes:
1.	It includes various techniques of chemical analysis.
	- Will be able to understand the aspects of some advanced techniques of
	analysis.
	- Able to perform various types of chromatographic techniques.
	- Principle technique and performance of absorption spectra and X-ray
	diffraction will be cleared.

Sr.	References
No.	
1.	G.D. Christian, Analytical Chemistry, John Wiley, 1986.
2.	R-A. Day and A.L. Underwood: Quantitative Analysis, (Prentice Hall,
	India), 1998.
3.	B.K. Sharma, Instrumental methods of chemical analysis, Goel publishing
	House, 2000.
4.	Skoog, Holler and Nieman: Principles of Instrumental Analysis, Harcourt
	Acta, 2001.
5.	B.K. Sharma, Chromatogarphy, Krishna Prakashan media, 1997.
6.	S. K. Chatterjee, X-Ray Diffraction theory and application, ISTE, 2007.
7.	A.G. Jackson: Handbook of Crystallography For Electron Microscopists and
	Others Library of Congress Cataloging-in-Publication Data Jackson, A. G.
	(Allen G.) ISBN-13: 978-1-4612-7776-7 1, 1991.

Online- Resources

On-line Resources:- From time to time are many online resources, including websites, databases, e-books, bibliographies and platforms that offer educational videos, lectures on a range of topics can be suggested or displayed tot he students.

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25)

Syllabus with effect from the Academic Year 2022-2023

Master of Science, Industrial Chemistry

Course Code	PS04CICH54	Title of the Course	Practical's
	PS04CICH55		
Total Credits of	8	Hours Per Week	16
the Course			

Course	1.	The students are trained to handle the experimental set up	
Objectives:		including standardization.	
	2.	Qualitative Analysis of Organic Compounds.	
	3.	Estimation of Organic functional group/ molecules by	
		titrimetric methods.	
	4.	Be able to interpret the spectrum of any organic compounds /	
		molecules.	
	5.	This course gives an idea of various analytical techniques.	

Course Code	PS03CICH54	Title of the Course	Industrial Organic
			Chemistry II
Total Credits of	4	Hours Per Week	8
the Course			

	Description	
Spectrum Analysis (5 Practical's)		
Estin	nation	
1.	Determine the amount of phenol in the given solution.	
2.	Determine the amount of crotonic acid in the given solution.	
3.	Determine the No and percentage of Hydroxy / goup (-OH) of a given	

- sample.To determine % of Vitamin C in a given table.
- 5. To determine the amount of acetic acid and acetamide in the given soultion

Course Code	PS04CICH55	Title of the Course	Analytical aspects
			in Industries
Total Credits of	4	Hours Per Week	8
the Course			

1.	To determine the rate of acid-catalyst Iodination of acetone	
	in presence of excess acid and acetone at room temperature.	
2.	To determine the transition temperature of alauber's salt by	
	solubility method.	
3.	To determine the amount of aspirin in a given tablet by	
	conduct metrically.	

4.	To determine the rate constant of the saponification of ethyl	
	acetate at different temperatures conductometrically and	
	calculate the energy of activation of the reaction.	
5.	To determine the neutralisation capacity of given antacid	
	tables.	
6.	Preparation of pure sample of ferrous ammonium sulphate.	
7.	Preparation of pure sample of potash alum	
8.	To determine % Fe in iron tablet by colorimetry.	
9.	Assay of Fe in pharmaceutical preparation using potassium	
	thiocynate by colorimetric.	
10.	Determination of distribution co-efficient of ammonia	
	between chloroform & water.	
11.	Proximate analysis of coal	

Teaching	Demonstration/ Hands on training of various types of analysis
Learning	with or without instruments.
Methodology:-	

Evaluation Pattern			
Sr.	Details of the Evaluation	Weightage*	
No.		(%)	
1.	Internal Practical Examination (As per CBCS R. 6.8.3)	30%	
2.	University Examination	70%	

Course	Course Outcomes:		
1.	Be able to perform hydroxy/ group estimation, phenol estimation, crotonic		
	acid estimation, ascorbic acid estimation and acetic acid and acetamide		
	estimation.		
2.	To get an expertise in spectrum analysis.		
3.	Students will be able to understand rate of reaction with/ without catalyst.		
5.	Determine the amount of aspirin in drugs.		
6.	Students will know about the colorimetric analysis.		

Sr.	References
No.	
1.	Comprehensive practical organic chemistry Preparationa nd quantitative.
	Analsys. By V.K Ahluwalia and Renu Agarwal
2.	Comprehensive practical organic chemistry Qualitative Analysis By V.K.
	Ahluwalia and Renu Agarwal.
3.	A Laboratory Manual of Experiments in Physical Chemistry By D. Breman
	and C.F.H. Tipper. (Mcgraw Hill Publishing Company Ltd. London)
4.	Systematic Experimental Physical Chemistry by S.W. Rajbhoj and T.K.
	Chondhekar (Anjali Publication Auran Gabad)
5.	Advanced Practical Inorganic chemisty by Gurdeep Raj (Goel Publishing
	House)
\mathbf{O} "	D

Online- Resources

On-line Resources:- From time to time are many online resources, including websites, databases, e-books, bibliographies and platforms that offer educational videos, lectures on a range of topics can be suggested or displayed tot he students.

Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023 Master of Science, Industrial Chemistry

Course Code	PS04CICH56	Title of the Course	Comprehensive
			Viva
Total Credits of	1	Hours Per Week	1
the Course			

Course	1.	To assess the overall knowledge of the student in the
Objectives		relevant subjects covered in core as well as elective courses.

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25)

Syllabus with effect from the Academic Year 2022-2023

Master of Science, Industrial Chemistry

Course Code	PS04EICH51	Title of the Course	Natural Products
Total Credits of	4	Hours Per Week	4
the Course			

Course	1.	The student is able to understand basic importance of Natural	
Objectives:		products.	
	2.	Learn the different types of alkaloids, Vitamins, Steroids &	
		Terpenoids.	
	3.	The student is able to learn about the synthesis of alkaloids,	
		vitamins, steroids & Terpenoids.	
	4.	Learn the different biogenesis of Alkaloids, Terpenoids,	
		Carotenoids & Steroids.	

Course Content		
Unit	Description	Weightage*
		(%)
1.	Introduction of natural products, General methods for the	25%
	structure determination of natural products.	
	Vitamins: Structure & Synthesis of Vitamin Al, Vitamin B ₁	
	(Thiamine), Vitamin B6 (Pyriodoxine) and Biotin (Vitamin	

	H), Synthesis of Vitamin C.	
2.	Alkaloids: Introduction of opium alkaloids, Structure and	25
	Synthesis of Morphine, rearrangement in opium alkaloids,	
	structure and synthesis of Sceletium alkaloid A4, Structure	
	and synthesis of Mahanimbine, Synthesis of Resperpine and	
	Tylophorine, biogenesis of Alkaloids	
3.	Terpenouids and Cartenoids: Structure and synthesis of	25
	cyclic sesqiterpenoids eudesmol and cadinene, Structure and	
	Synthesis of B- Carcotene, Synthesis of Caryophyllene and	
	Khusimone, molecular rearrangement of Caryophyllene and	
	Logifolene, biogenesis of Terpenoids and Carotenoids.	
4.	Steroids: Structure and Synthesis of Cholestrol, Synthesis	25
	of Cortisone, Androgens and Oestrogens, Chemistry of bile	
	acids, Biogenesis of Steroids.	

Teaching	To meet the effective teaching & the learning requirements,	
Learning	teaching learning methodology, comprises, classroom teaching,	
Methodology:-	use of e-sources, library books, IT tools, encouraging students to	
	participate in Seminar/ workshops, presentation by students,	
	assigning work based upon subject requirements etc.	

Evaluation Pattern			
Sr.	Details of the Evaluation	Weightage*	
No.		(%)	
1.	Internal Written/ Practical Examination (As per CBCS R	15%	
	6.8.3)		
2.	Internal Continuous Assessment in the form of Practical,	15%	
	Viva- Voce, Quizzes, Seminars, Assignments, Attendance		
	(As per CBCS R. 6.8.3)		
3.	University Examination	70%	

Course	e Outcomes:
1.	Able to classify natural products from their chemical structure & to indicate
	their possible biosynthesis.
2.	Students able to know about structure, synthesis & different biogenesis of
	Alkaloids, Terpenoids, Carotenoids & Steroids.
3.	Students able to know about the significance & importance of Alkaloids,
	Terpenoids carotenoids & steroids.

Sr.	References
No.	
1.	The Chemistry of Natrual Products, K.W. Bentley, Vol. I-V,
	(interscience)
2.	Organic Chemistry, Vol.2, I.L. Finar, 5th Edition (1994), ELBS
	Publications.
3.	Natrual Products Chemistry Vil. I & II, Nakanishi et al., Academic Press
	Pub. (1974)

4.	The molecules of Natre, J.B. Hendrickson, W.A. Benjamin Inc (1965)
5.	Selected Organic Synthesis, Ian Fleming, John Wiley (1977)
6.	Chemistry of Natrual Products, N.R. Krishnaswamy, University Press Ltd. (1999)

Online- Resources

On-line Resources:- From time to time are many online resources, including websites, databases, e-books, bibliographies and platforms that offer educational videos, lectures on a range of topics can be suggested or displayed tot he students.

Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023 Master of Science, Industrial Chemistry M.Sc. Industrial Chemistry, Semester - IV

Course Code	PS04EICH52	Title of the Course	Introduction to Biochemistry
Total Credits of the Course	4	Hours Per Week	4

Course	The ob	bjecti	ive of the	course					
Objectives:	1.	То	provide	basic	understanding	of	the	Chemistry	of
		bion	nolecules.						
	2.	To s	tudy the	propert	ies, classificati	on an	d fun	ction of vari	ous
		biolo	ogical mo	lecules	such as vitami	ns, pr	oteins	s, carbohydra	ates
		and	nucleic ac	cids.					
	3.	To g	gain know	ledge a	about enzymes,	erzy	me ki	netics and th	neir
		regu	lation.						
	4.	To e	enlighten	students	s about the role	e of w	vater i	in interactior	ı of
		bion	nolecules.						

Course Content					
Unit	Description	Weightage*			
		(%)			
1.	Vitamins:	25%			
	Classification, introduction, chemistry absorption, transport,				
	mobilization and biochemical functions of Vitamins: A,				
	E,K,C,B ₁ ,B ₂ ,B ₆ , B ₁₂ , H, CoA, Folic acid Niacin.				

	Lipids:	
	Nomenclature, Structure and physical properties of some	
	natrually occurring fatty acids, triacelgylycerol and waaxes	
	as sources of stored energy, insulation and water repellents,	
	Types of membrane lipids, Introduction to glycerophospho	
	lipids, galacto lipids, sphingo lipids, phospho lipids and	
	sterols.	
2.	Proteins:	25%
	Properties, Classification and Conventions of common	
	amino acids, stereoisomerism in a - amino acids, Peptides:	
	Formation, Merrifelds Synthesis, compositions and sizes,	
	protin separation, purificationa nd Characterization:	
	Sequencing of Peptides: Sanger's method Adman	
	degradation, outline of other mehtods: Protein Sequences and	
	Evoluation: Oxygen binding proteins- hemoglobin and	
	Myoglobin in Oxygen transport and storage.	
3.	Carbohydrates:	25%
	Classification and stereochemistry, Biologically important	
	hexose derivatives, Nomenclate for disaccharides, strcutre	
	and role of some Homo and Hetero Polysaccharides,	
	Glycoconjugates: Proteoglycans, Glycoproteins and	
	Glycolipids, Introduction to Glycobiology (The Sugar Code)	
	Water:	
	Interaction among biomolecules in aquenous systems,	
	Buffering aginst pH changes in biological systems,	
	participation of water in biological rections.	

4.	Enzymes:	25%
	Classification Nomenclature & extraction factors affections,	
	catalytic activity and specificity in action, regulation of	
	enzyme activity, enzyme inhibition.	
	Illustrative enzymatic	
	recations using Chymotrypsin, Hexokinase, enolase and	
	Lysozyme	
	Nuclelc acids:	
	Components of nucleic acids, nomenclature of nucleotides,	
	strucre of DNA Chargaff's Rule of DNA Composition,	
	Watson and Crick Model, structure and types of RNA.	

Teaching	-	Topics in the course will be taught and discussed in
Learning		interactive sessions using conventional black board and
Methodology:-		chalk as well as ICT tools such as power-point
		presentations & videos.
	-	Course material will be provided from primary and
		secondary sources of information.
	-	To develop critical thinking and conceptual knowledge,
		group discussions and seminar presentations will be
		conducted by the students.

Evalu	Evaluation Pattern					
Sr.	Details of the Evaluation	Weightage*				
No.		(%)				
1.	Internal Written/ Practical Examination (As per CBCS R	15%				
	6.8.3)					

2.	Internal Continuous Assessment in the form of Practical,	15%
	Viva- Voce, Quizzes, Seminars, Assignments, Attendance	
	(As per CBCS R. 6.8.3)	
3.	University Examination	70%

Course Outcomes:						
1.	After the successful competition of the course, the learner will be able to:					
	1.	Carry out laboratory experiments using biomolecules.				
	2.	Get trained & work with the application of bimolecular industries.				
	3.	Describe all the biomolecules with their classification & function				
	4.	Explain the importance of water in biological relations.				

Sr.	References
No.	
1.	Lehninger Principles of Biochemistry, David L. Nelson and Michael M.
	Cox {Palgrave MacMillan / W.H. Freeman & Company, New York]
2.	Principles of Biochemistry, Donald J. Voet, Judith G. Voet, Charlottee W.
	Pratt [John Wiley & Sons]
3.	Biochemistery, U. Satyanarayana, Books & Allied (p) Ltd., Kolkata (India)
~	-

Online- Resources

On-line Resources:- From time to time are many online resources, including websites, databases, e-books, bibliographies and platforms that offer educational videos, lectures on a range of topics can be suggested or displayed tot he students.