SARDAR PATEL UNIVERSITY Programme: MSC (Integrated Biotechnology) Semester: I Syllabus with effect from: June 2010

Paper Code: PS01CIGB06	Total Credits: 3
Title Of Paper: Biomathematics	Total Credits: 5

Unit	Description in detail	Weightage (%)
1	SOME SPECIAL FUNCTIONS:	
	Set, union and intersection of two sets, Function, brief idea of one-to-one and	
	onto function, definitions of domain, co-domain and range of function,	
	examples of finding range and domain of given function, Cartesian product and	
	its biological application, linear functions (definition and its general	
	form $y = ax + b$), point-slope formula, Quadratic function(definition), derivation	
	of coordinates of vertex of parabola represented by $y = ax^2 + bx + c$,	
	visualization of vertex of parabola as a local extrema & local extremum of	
	quadratic function (along with examples), power functions (definition and	
	general form $y = ax^n$), graphical representation of power function for different	
	cases $(a > 0, a < 0, n = 0, n = 1, n = 2, n < 0, 0 < n < 1, n > 1)$, polynomials,	
	periodic functions (definition), trigonometric functions , trigonometric	
	equalities involving sin, cos, tan, cosec, sec, and cot (related examples),	
	exponential function, definition and properties/rules of exponential function	
	(related examples), logarithmic function, definition and properties/rules of	
	logarithmic function (related examples).	
2	LIMIT AND DIFFERENTIATION OF FUNCTION:	
	Limit of function, definition (informal), evaluation of algebraic limit by direct	
	substitution, factorization and rationalization, evaluation of limits by standard	
	result $\lim_{x\to a} \frac{x^n - a^n}{x - a} = na^{n-1}$, evaluation of limit when $x \to \infty$, evaluation of	
	trigonometric limits (using results $\lim_{x\to 0} \frac{\sin x}{x} = 0$ and $\lim_{x\to 0} \frac{\tan x}{x} = 0$), evaluation	
	of logarithmic and exponential limits (using result $\lim_{x\to 0} \frac{a^x - 1}{x} = \log_e a$),	
	differentiation (definition and geometrical meaning), differentiation using	
	standard derivatives, derivative of exponential, logarithmic, trigonometric and	
	inverse trigonometric functions, product rule and quotient rule for	
	differentiation, derivative of composite function using chain rule, local maxima	
2	and local minima for function of single variable, higher order derivatives.	
3	PARTIAL DERIVATIVES, INTEGRATION & DIFFERENTIAL EQUATION:	
	Introduction of function of several variables, partial derivative of function of	
	several variables (two and three variables), higher (second) order partial	
	derivatives, Maxima and minima for functions of two and more variables,	
	Integration (definition as antiderivative), integration using standard integrals,	
	integration by substitution, integration by trigonometric substitution, integration	
	by parts, integration by partial fraction, differential equation (definition), order	
	and degree of a differential equation, solution of differential equation using	
ı		

	method of separable variable (i.e. solution of differential equations of the form	
	$y' = ay + b$, $y' = ay^2 + by + c$ and $y' = ky/x$)	
4	MATRIX THEORY:	
	Definition of matrix, Equality of matrices, Sum of two matrices, Scalar	
	multiplication of a matrix, Transpose of a matrix, Introduction to a special types	
	of matrices like row matrix, column matrix, square matrix, diagonal matrix,	
	symmetric matrix, skew-symmetric matrix, identity matrix, Null (zero) matrix,	
	Row – echelon form of a matrix, Rank of a matrix, Inverse of a square matrix,	
	Eigenvalues and eigenvectors of a square matrix.	
	Practical:	
	• To apply the concept of function in biosciences.	
	• To use the concept of exponential & logarithmic function in the field of	
	biosciences.	
	• To make use of log function in some complex calculation of mathematics.	
	• To apply the concept of trigonometric functions to solve some practical problems.	
	• To study the basic concept of vector space.	
	• To use matrix algebra & vector space theory to solve the problems of genetics.	
	• To apply the knowledge of matrix algebra in order to find the compactness of secondary RNA molecule.	
	• To apply the concept of minima and maxima for the function of single variable.	

Basic Text & Reference Books:

- Introduction to Mathematics for Life-Sciences by P. Batschelet Springer Verlag
 Mathematics for Biological Science by Jagdish Arya and Ladner

