SARDAR PATEL UNIVERSITY

$\label{eq:msc} \textbf{Programme: MSC (Integrated Biotechnology)}$

Semester: V Syllabus with effect from: June 2012

Paper Code: PS05CIGB04
Title Of Paper: Bioinformatics & Structural Biology
Total Credits: 3

Unit	Description in detail	Weightage (%)
1	Biological Databases: Overview of available Bioinformatics resources on the	
	web (NCBI, EBI, EXPASY etc.); Biological Databases: Nucleic Acid Sequence	
	Databases-GenBank /EMBL/DDBJ; Protein Sequence databases-NBRF-PIR,	
	Uniprot KB; Database search Engines (Entrez, SRS); Genome databases and	
	related data resources (EST, STS, GSS, HSS, etc.): Nature and type of data,	
	organization of data in databases, genome data visualization (with emphasis on	
	human genome)	
2	Sequence analysis: Concepts in sequence analysis: Pairwise sequence	
	Alignment algorithm (Needleman & Wunsch; Smith & Waterman); Scoring	
	Matrices for nucleic acids and proteins: PAM250, BLOSUM62, Database	
	similarity searches-BLAST, FASTA; Multiple sequence Alignment: CLUSTAL	
	W; Derived data bases-Prosite, BLOCKS, Pfam/ Prodom, Basic concepts in	
	Taxonomy and Phylogeny, Concepts in classical taxonomy, Phylogenetic	
3	analysis algorithms (Maximum Parsimony, UPGMA). Structural Bioinformatics: Overview of macromolecular x-ray	
3	,	
	crystallography: Principles of crystallography, Co-ordinate systems, Fitting and	
	refinement, Validation, Analysis of 3D structures; Data submission to PDB, Ramchandran	
	Plot, secondary, tertiary and quarternary structures, motif, domains; Principles	
	of	
	protein folding; RNA structure.	
4	Molecular Modeling: Protein Classification: CATH, SCOP; Protein structure	
-	prediction: Ab initio methods, Homology modeling, Fold recognition;	
	Prediction	
	of RNA secondary structure, Data banks: – PDB, NDB, CSD,	
	Molecular interaction of protein: – protein, protein-carbohydrate, protein-DNA,	
	DNA-small molecules.	
	Practical:	
	Introduction of different database of NCBI,	
	 Protein Sequence Databases (PIR, SwissProt) 	
	 Introduction of PIR, ExPasy, EMBL, SCOP, CATH 	
	 Database introduction-Prosite, BLOCKS, Pfam/ Prodom 	
	 Introduction of Genome browser – UCSC, ensemble, vista 	
	• Use of L-ALIGN	
	Alignment using BLAST	
	Clustal-W and Phylogenetic Analysis	
	Visualization by RASMOL & SPDBV	
	Homology modeling	
	• Docking	
	Ramchandran Plot	
	- Administrati i 10t	

Basic Text & Reference Books:

- Mount DW, Bioinformatics: Sequence and Genome Analysis (2nd edition). Spring Harbor Press.
- Arthur Lesk. Introduction to Bioinformatics. Oxford Uni. Press.
- Rastogi. Bioinformatics: Methods and Applications.
- ➤ Ghosh Z and Mallick B, Bioinformatics-Principles and Applications, Oxford University. Press (First Print: 2008; Second Print: 2009)
- > Creighton TE, Protein Structure: A Practical Approach
- > Creighton TE, Protein Structure and Molecular Properties, Freeman
- ➤ Leach AR, Molecular Modeling : Principles and Application
- ➤ Bourne PE, Weissig H, Structural Bioinformatics, Wiley Schlick T. Molecular Modelling and Simulation An Inter disciplinary Guide, Springer
- ➤ Pevzner PA Computational Molecular BiologyAn Algorithmic Approach. Prentice Hall
- > Thomas Lengauer, Bioinformatics From Genomes to Therapies: Volume 1

