SARDAR PATEL UNIVERSITY VALLABH VIDYANAGAR

SYLLABUS EFFECTIVE FROM: 2017-18 Under Choice Based Credit Scheme M.Sc. GENETICS SEMESTER-II

COURSE DETAILS

M. SC. GENETICS						
Course Type	I	II	III	IV		
Core I (4 Credits)	Molecular Biology PS01CGEN21	Cytogenetics PS02CGEN21	Genetics of Mammalian Development PS03CGEN21	R-DNATechnology PS04CGEN21 (Same as PS04CMIC21)		
Core II (4 Credits)	Bioinstrumentation PS01CGEN22	Microbial Genetics PS02CGEN22	Human Molecular Genetics PS03CGEN22	Animal Genetics and Genetic Counselling PS04CGEN22		
Core III (4 Credits)	Cell Biology PS01CGEN23	Fundamentals of Immunology PS02CGEN23	Genetics in Crop Improvement PS03CGEN23	Lab-I (Practical based on PS04CGEN21 & PS04CGEN22) PS04CGEN23		
Core IV (4 Credits)	Lab-I (Practical based on PS01CGEN21 & PS01CGEN22) PS01CGEN24	Lab-I (Practical based on PS02CGEN21 & PS02CGEN22) PS02CGEN24	Lab-I (Practical based on PS03CGEN21 & PS03CGEN22) PS03CGEN24			
Core V (4 Credits)	Lab-II (Practical based on PS01CGEN23 & PS01EGEN2X) PS01CGEN25	Lab-II (Practical based on PS02CGEN23 & PS02EGEN2X) PS02CGEN25	Lab-II (Practical based on PS03CGEN23 & PS03EGEN2X) PS03CGEN25			
Core VI (1 Credits)	Comprehensive Viva- Voce PS01CGEN26	Comprehensive Viva- Voce PS02CGEN26	Comprehensive Viva-Voce PS03CGEN26	Comprehensive Viva-Voce PS04CGEN26		
Elective I (4 Credits)	Biochemistry PS01EGEN21	Biostatistics PS02EGEN21	Advanced Immunology PS03EGEN21 (Same as PS03EMIC21)	Lab-I I (Practical based on PS04EGEN2X & PS04EGEN2X) PS04EGEN21		
Elective II (4 Credits)	Methods and Applications of Transgenic plants PS01EGEN22	Medical Microbiology PS02EGEN22	Bioinformatics PS03EGEN22 (Same as PS03EMIC22)	Dissertation PS04EGEN22 (12 Credits)		
Elective III (4 Credits)	Phytoresources Utilization and Conservation PS01EGEN23	Microtechniques PS02EGEN23	Omics and Computational Biology PS03EGEN23 (Same as PS03EMIC23)	Population and Evolutionary Genetics PS04EGEN23		

Elective IV (4 Credits)	Human Physiology PS01EGEN24	Toxicology PS02EGEN24	Food and Dairy Microbiology PS04EGEN24 (Same as PS04EMIC24)
Elective V (4 Credits)			IPR & Biosafety PS04EGEN25 (Same as PS04EMIC25)

Paper Code: PS02CGEN21	Total Credits: 4
Title of Paper: Cytogenetics	

Unit	Description in detail	Weightage
1	Introduction, chromosomal staining, banding and FISH	25 %
	techniques: An over view of Cell cycle, Mitosis and Meiosis,	
	Global structure of Chromosomes, ISCN nomenclature system	
	Image Analysis System: Charge-coupled device cameras, Image	
	analysis Systems.	
	Interpretation and reporting of chromosomal analysis	
	Conventional staining (Giemsa and aceto-orcein), Giemsa	
	banding, Quinacrine banding, Constitutive heterochromatin	
	banding Reverse banding, Nucleolar organizing region staining	
	Sister chromatid exchange Miscellaneous/Other banding	
	Techniques. Applications of fluorescence <i>in situ</i> hybridization to	
	chromosome analysis Latest techniques- Fiber FISH, Spectral	
	karyotyping and Chromosomal painting (WCP & PCP).	
2	Human Cytogenetics:	25 %
	Collection, transport and storage of samples for cytogenetic	
	analysis Morphology and classification of human chromosomes	
	Numerical chromosomal aberrations (Aneuploidy and Euploidy)	
	Structural chromosomal abnormalities (Iranslocations,	
	Inversions, Deletions, Insertions Duplications, Dicentric and	
	sochromosomes, Ring chromosomes, Chromosomes breaks, gaps	
2	and fragme sites, Marker chromosomes).	25 M
3	Lymphoaute oulture Amniotic fluid cell culture	25 %
	Chorionic villus culture. Establishing fibroblast culture.	
	Cytogenetic analysis of human sperm, oocyte and embryo	
	Chromosomal abnormalities in malignant disease (CML AML	
	ALL etc.) Cytogenetic characterization of various cell lines	
4	Applications of cytogenetics in Humans Domestic animals &	25 %
-	Plants Humans:	20 /0
	Individual with clinical features of Genetic diseases during the	
	following: (Embryonic period, Neonatal period, During early	
	childhood level, During puberty and secondary sexual	

development,	During	adulthood,	During	infertility	or	
reproductive fail	ure)					
Domestic anima	als: Norn	nal chromosor	nal comple	ements in ca	ttle,	
buffalo, sheep, g	goat, hors	e, pig, cat, do	g and pou	ltry; Importa	nce	
of cytogenetic in	vestigatio	ons in domesti	ic animals.			
Plants : Role of	of cytoge	netics in plan	nts, Types	of polyplo	idy,	
Artificial induc	tion of	polyploidy i	n plants,	Polyploidy	in	
Triticum spelta,	Gossypiu	ım hirsutam a	nd Triticos	secale wittma	ack,	
Phenotypic effect	ts of poly	/ploidy.				
Genotoxicity tes	sting					

Basic Text & Reference Books:

- Cell Biology, Genetics, Molecular Biology, Evolution and Ecology by P S Verma and V K Agraval (Multicolour/14th Edition) Published by S. Chand and company Ltd., New Delhi (ISBN: 81-219-2442-1).
- Human Cytogenetics: Constitutional analysis by D. E. Rooney. Oxford University Press. New York (ISBN: 0-19-96384-3 (Hbk.)).
- Essential of Human Genetics (4th edition) by S. M. Bhatnagar, M. L. Kothari and L. A. Mehta (ISBN: 81-250-1426-8).
- Genetics in Medicine (3rd Edition) by Thompson and Thompson, W B Saunders and company, West Washington square, Philadelphia, PA-19105 (ISBN: 0-7216-8857-8).
- Senetics (2nd Edition) by Jan M Friedman, Fred J Dill, Michael R Hayden and Barbara C
- McGillivray, B I Waverly Pvt. Ltd., New Delhi, Noida, U.P. (ISBN: 81-7431-025-8).
- Essential of Modern Genetics by V C Shah. Nirav Prakashan, Ahmedabad.
- Cytogenetics in Animal reproduction by W. C. D. Hare and Elizabeth L. Singh, published by Commonwealth Agricultural Bureaux (ISBN: 0 85198 444 4)
- The AGT Cytogenetics Laboratory Manual Barch, Margaret J. / Knutsen, Turid./ Spurbeck, Jack L. (eds.) 3rd edition, Lippincott_raven Publishers, Philadelphia, 1997 ISBN 0-397-51651-7 (New updated edition is about to release)
- Human Cytogenetics: Malignancy and acquired abnormalities. A Practical Approach. 3rd edition, Oxford University Press, 2001, ISBN 1-19-963842-X (Hardback) / ISBN 1-19-963841-1 (Paperback).
- Verma, Ram S. / Babu, Arvind, Human Chromosomes, Principles and Techniques 2nd edition, Mc Graw-Hill, Inc., New York, 1995, ISBN 0-07-105432-4
- Hema Purandare & Amit Chakravarty, Bhalani Publishing House, Mumbai. Human Cytogenetic Techniques & Clinical Applications, 2000, ISBN 81 85578 41 9
- Lisa G. Shaffer, Marilyn L. Slovak, Lynda J. Campbell. International System for Human Cytogenetic Nomenclature: ISCN 2009, S. Karger Publishers, ISBN 978-3-8055-8985-7
- Borgaonkar, Digamber S., Chromosomal Variation in Man: A Catalog of Chromosomal Variants and Anomalies 8th edition, Wiley-Liss, New York, 1997, ISBN 0-471-24332-9

Paper Code: PS02CGEN22	Total Credits: 4
Title of Paper: Microbial Genetics	

Unit	Description in detail	Weightage
1	Mutation, DNA damage and Repair	25 %
	Spontaneous mutations (Random v/s Adaptive nature of	
	mutation; Mutation rate and its determination, Types of DNA	
	damage and their consequences (spontaneous and chemical	
	induced deamination, radiation induced DNA damage, loss of	
	nitrogen bases, alkylation, intra and inter strand cross linking),	
	DNA repair pathways (Mis-match repair in prokaryotes and	
	eukaryotes, Nucleotide excision repair in prokaryotes and in	
	eukaryotes, base excision repair, recombinational repair, SOS	
	pathway, specific repair of oxidative DNA damage, repair of	
	pyrimidine dimers, repair of alkylation induced damage and	
	adaptive response and other specific repair mechanisms).	
2	Plasmid Biology (Types of plasmids, compatibility, regulation	25 %
	of plasmid copy number and plasmid segregation)	
	Phage genetics (T-series, complementation and Fine structure	
	analysis, biology of lambda phages)	
	Recombination (Types, Models of homologous recombination,	
	Molecular mechanism of homologous, Homologous	
	recombination in eukaryotes, mating type switching, Site specific	
	recombination and its biological significance)	
	Fungal Genetics (Tetrad analysis and Mitotic recombination)	
3	Genetic exchange in prokaryotes	25 %
	Transformation (Natural transformation in Bacillus subtilis,	
	Streptococcus pneumonia and Haemophilus influenza).	
	Transformation by inducing artificial competence, Gene linkage	
	and mapping by transformation.	
	Transduction (Generalized transduction in P22, P1, T4 and Mu	
	bacteriophages, homologous recombination with recipient's	
	chromosome, measuring transduction (co-transduction of	
	markers, marker effects, abortive transduction, transduction of	
	plasmids). Applications of generalized transduction, Specialized	
	transduction and its applications.	

	Conjugation (F-factor mediated Conjugation in E. coli, Hfr conjugation and chromosomal transfer, F-prime conjugation and merodiploids, Conjugation of fertility inhibited F-like plasmids, Non conjugative mobilizable plasmids, chromosomal mobilization of non-F plasmids, Plasmid based conjugation in other bacteria (Salmonella, Pseudomonas, Streptomyces and streptococcus, Interrupted mating and conjugational mapping)	
4	 Agrobacterium genetics: Ti plasmid, Interkingdom gene transfer (Key early experiments, vir regulon, protein secretion apparatus, conjugation model of T-DNA transfer, Integration products). Restriction modification systems: Types of RM systems, Role of RM systems, salient features and insights into evolution of diverse types of Restriction endonucleases and Methyl transferases, Regulation of RM systems. Transposable elements: Types of bacterial transposable elements; Structure, genetic organization and mechanism of transposition of Tn5, Tn3, phage Mu, Tn7, IS911, Integrons, Retrotransposons, conjugative and mobilizable transposons, Assays of transposition. 	25 %

Basic References:

- Genes X: Lewin
- Molecular Biology of the Gene-Watson et al.
- Modern Microbial Genetics-Uldis Streips and Ronald Yasbin
- Microbial genetics-Stanley Molay, John Cronan and David Freifelder.
- Molecular Genetics of Bacteria-Snyder and Champness.
- Molecular Genetics-Stent and Calender
- Principles of Genetics- Snustad and Simmons
- Molecular Biology of the Cell-Alberts et al.

Paper Code: PS02CGEN23	Total Credits: 4
Title of Paper: Fundamentals of Immunology	

Unit	Description in detail	Weightage
1	Introduction to immune system: mechanisms of barrier to entry of microbes / pathogens; Cells and organs of the immune system involved in innate and adaptive immunity: cells of the immune system, primary and secondary lymphoid organs, Hematopoiesis and its regulation Innate immunity: receptors of the innate immunity (TLR and sensing of PAMPs, CLR,RLR and CLR); Inflammatory responses. Antigens: antigenicity, and immunogenicity. B and T cell epitopes.	25 %
2	Antibody: Structure of immunoglobulin; classes of immunoglobulins, Signal transduction pathways emanating from the BCR, The Organization and Expression of Lymphocyte Receptor Genes: Hozumi and Tonegawa's Experiment, Multigene organization of Ig Gene, Mechanism of VDJ recombination, B cell receptor expression, allelic exclusion,B cell isotype switching and somatic hypermutation; expression of membrane bound and soluble immunoglobulin; T cell receptor genes and expression. Complement system: Overview of classical, alternative and lectin complement pathways, functions of complement, regulation of complement, complement deficiencies, microbial complement evasion strategies.	25 %
3	The Major Histocompatibility Complex and Antigen Presentation: The structure and function of MHC molecules, general organization and inheritance of MHC, self – MHC restriction, endogenous and exogenous pathway of antigen processing and presentation; cross presentation of exogenous antigen, presentation of non peptide antigens Cytokines: properties, receptors, associated diseases, therapeutic applications, cytokines. signaling pathways: JAK-STAT and FAS-FASL signaling pathways.	25 %
4	Basics of Antigen-antibody interactions: Agglutination,	25 %

precipitation, RIA and ELISA.	
Cell and antibody mediated effector response: Antibody mediated	
effector response (Neutralization, opsonization/ phagocytosis,	
complement fixation, ADCC); Cell mediated effector response	
(Generation of effector CTL's, Granzyme and Perforin Mediated	
Cytolysis, Fas-FasL Mediated Cytolysis, NK cell mediated	
cytolysis Immunity to infection: Immunity to viruses, Immunity	
to bacteria and fungi, Immunity to parasites (protozoa and	
worms).	

References

1. Owen, J. A., Punt, J., & Stranford, S. A. (2013). Kuby immunology (7th Edn). New

York: WH Freeman.

2. Murphy, K., & Weaver, C. (2016). *Janeway's immunobiology* (9th Edn) Garland Science.

3. Male, D., Brostoff, J., Roth, D., & Roitt, I. (2012). Immunology (8th Edn) With

STUDENT CONSULT Online Access. Elsevier Health Sciences.

4. Abbas, A. K., Lichtman, A. H., & Pillai, S. (2014). Cellular and molecular

immunology (6th Edn) Elsevier Health Sciences.

5. Relevant review articles / research papers / handouts of latest development in the subject.

PS02CGEN24: Lab-I (Practical based on PS02CGEN21 & PS02CGEN22)

PS02CGEN25: Lab-II (Practical based on PS02CGEN23 & PS02EGEN2X)

PS02CGEN26: Viva

Paper Code: PS02EGEN21	Total
Title of Paper: Biostatistics	Credits: 4

Unit	Description in detail	Weightage
1	Definition of Biostatistics	25 %
	Data Collection:	
	Types of Biological Data:	
	Qualitative (Categorical) Data: Nominal and Ordinal Data	
	Quantitative (Numerical) Data: Discrete and Continuous Data	
	Methods of Collecting Data:	
	Survey Method: Concept of a statistical population and sample from a	
	population; Methods of drawing sample from the population, Simple	
	Random Sampling (SRS), Stratified Random Sampling, Cluster	
	Sampling; Experimental Method	
	Presentation:	
	Construction of frequency distribution (Simple or Discrete and Grouped):	
	Rules for constructing Grouped frequency distribution	
	Diagrammatic Presentation: Bar Diagram (Chart), Simple, Sub – divided	
	(Component), Percentage, Multiple, Pie Chart	
	Graphical Presentation: Line Graph, Histogram (For uniform class width	
	only), Frequency Polygon, Frequency Curve, Ogives or Cumulative	
	Frequency Curves	
	Descriptive Statistics:	
	Measures of Central Tendency (Averages): Mean or Arithmetic Mean,	
	Median, Mode, Partition values (For Raw and Grouped Data), Quartiles,	
	Deciles, Percentile, Partition values using graphs (Ogives).	
	Inter Quartile Bange (IOP) Standard Deviation (SD) and Variance	
	Intel Qualitie Range (IQR), Standard Deviation (SD) and variance, Coefficient of Variation (CV) Rox, and Whisker Plot	
	Coefficient of Variation (C, V) , $Box - and - Whisker Flot.$	
	Skewness Bowley's Coeff of Skewness Kurtosis (Definition Only)	
2	Probability and Probability Distributions:	25 Ø
4	Flements of Probability theory: Concept Classical definition of	25 70
	Probability Laws of Probabilities (Statements Only) Conditional	
	Probability Examples Probability Distributions: Binomial Distribution	
	Definition Conditions for applicability of Binomial Distribution	
	Examples applicable in the field of Biosciences: Normal Distribution	
	Definition (Normal and Standard Normal Distribution). Properties of	
	Normal Distribution. Examples applicable in the field of Biosciences.	
3	Correlation and Regression Analysis:	25 %
	Correlation: Meaning, Types of Correlation, Positive, Negative, Non -	/0
	Sense or Spurious, Methods of studying correlation, Scatter Plot	
	(diagram) method, Karl-Pearson's Correlation Coefficient (Product	
	Moment) Method; Properties of Correlation Coefficient	
	Coefficient of determination and its meaning: Spearman's Rank	
	Correlation Coefficient; Properties of Rank Correlation Coefficient.	

	Regression: Meaning, Properties of Regression Coefficients, Applications in the field of Biosciences. Testing Of Hypothesis: Contingency tables, Goodness of Fit	
4	Large Sample Test: Z - test for (Single) population proportion; Z - test for difference between two population proportions; Z - test for (Single) population mean; Z - test for difference between two population means Small Sample Test: t – test for (Single) Population Mean, t – test for difference between two population means (Unpaired t-test), t – test for difference between two population means (Paired t-test) Analysis Of Variance (ANOVA) : One – Way Classification , Two – Way Classification.	25 %

References:

• Fundamentals of statistics by S.C. Gupta

- Principles of Biostatistics by Marcello Pagano and Kimberlee Gaurea
- Biostatistics : A Foundation For Analysis in the Health Sciences by Daniel,

Wayne(Seventh Edition), Wiley India Pub.

Paper Code: PS02EGEN22	Total Credits: 4
Title of Paper: Medical Microbiology	

Unit	Description in detail	Weightage
1	Basics in Medical Microbiology	25 %
	Sources of infection, Modes of transmission, Factors	
	predisposing to microbial pathogenicity, Types of infectious	
	diseases.	
	Prevention and Control of Hospital acquired infections.	
	Immunoprophylaxis:	
	Types of vaccines and schedule of vaccination.	
	Recent advances in diagnostic microbiology: Automation,	
	Nucleic acid based detection methods.	
2	Bacteriology:	25 %
	Morphology, Cultural Characteristics, Antigenic structures,	
	Pathogenesis, Laboratory Diagnosis of following bacteria:	
	Staphylococcus, Streptococcus including Pneumococcus,	
	Bacillus, Corynebacterium, Clostridium, Mycobacteria, Vibrios,	
	E. coli, Salmonella, Shighella, Spirochaetes, Neisseria.	
3	Virology:	25 %
	The Nature and classification of viruses, Morphology: virus	
	structure and Virus replication.	
	General properties, diseases caused, lab diagnosis and prevention	
	of Pox, Herpes (HSV), Hepatitis (HAV & HAB), Picorna (Polio	
	virus), Orthomyxo (Influenza), Paramyxo (Mumps and Measles),	
	Rabdo (Rabies), Ebola, Zika and HIV virus.	
	Viral vaccines and antiviral agents.	
4	Parasitology & Mycology	25 %
	Parasitology: Laboratory techniques in parasitology.	
	Morphology, life cycle, laboratory diagnosis of following	
	parasites	
	Parasites: Entamoeba, Giardia, Leishmania, Plasmodium,	
	Helminths: Taenia, Ascaris, Wuchereria bancrofti, Schistosomes	
	Mycology: Morphology, diseases caused and lab diagnosis of:-	
	Opportunistic fungi - Cryptococcus, Candida, Aspergillus.	
	Fungi causing Cutaneous mycoses- <i>Dermatophytes</i>	
	Subcutaneous mycoses - <i>Mycetoma</i> ,	
	Systemic mycoses-Histoplasma	

References:

- 1. Textbook of Microbiology by Surinder Kumar
- 2. Medical Parasitology by R. Karyakarte.
- 3. P. B. Godkar. Text Books of Medical Laboratory Technology
- 4. Anathanarayana & Panikar A Text Book of Medical Microbiology
- 5. P. Chakraborthy- A Text Book of Microbiology

6. Chatterjee, KD – Parasitology

7. Danial Greenwood et al, Medical Microbiology, A guide to Microbial Infections, Pathogenesis, Immunity, Laboratory Diagnosis and control.

- 8. Jagdish Chander, Textbook of medical mycology.
- 9. Teri Shores- Understanding Viruses.
- 10. Biswas SB and Biswas A : An Introduction to Viruses.

Paper Code: PS02EGEN23	Total Credits: 4
Title of Paper: Microtechniques	

Unit	Description in detail	Weightage
1	Light microscopy	25 %
	Properties of lenses, Optical corrections, Properties and types of	
	objectives, Oculars and Illumination.	
	Light microscopes: Bright field, dark field, fluorescence, phase	
	contrast, polarizing, differential interference contrast.	
	Micrometry and photomicrography	
2	Basic components of electron microscopes. Thermionic and field	25 %
	emission guns. Types of electron microscopes: TEM, SEM,	
	STEM, ESEM and HVEM	
3	Maceration, squash and clearing techniques. Sample	25 %
	preparation for light microscopy.	
	Classification of fixatives, formulas', (Plant and animal	
	samples).	
	Sample preparation for light microscopy: Fixation,	
	dehydration and infiltration procedures.	
	Embedding media for light microscopy. Stains and staining	
	procedures- negative and positive staining procedures.	
	Microtomes: Rotary, sliding, cryostat. Histochemical	
	localization of metabolites for light microscopy: Starch,	
	proteins, lipids, total carbohydrates, lignins, polyphenols,	
	nucleic acid, histones, cutin, suberin and waxes. Localization	
	of enzymes: Peroxidase, acid phosphatase and succinic	
	dehydrogenase.	
4	Freeze etching and freeze fracturing.	25 %
	Sample preparation for Electron microscope: Fixatives, double	
	fixation, dehydration and infiltration procedures, embedding	
	media for electron microscopy. Fixation and embedding of	
	particulate samples like bacteria, virus etc. ultra-microtome	
	and freezing ultramicrotomesemithin sectioning, ultrathin	
	sectioning, grids, formavar coating, Staining for electron	
	microscopy.	
	Ultrastructural cytochemistry: Tannin, protein, cell wall	
	polysaccharide, lignin and membrane.	
	Enzymes: Peroxidase and phosphatase.	
	Immunocytochemistry.	

References:

• Microscopy and Microtechnique: R Marimuthu MJP Publisher, Chennai

• The study of plant structure: Principles and selected methods- T. P. O' Brien and M E McCully.

• Plant Microtechnique- Johansen, DA, McGraw Hill Book Co., New York.

• Botanical Microtechnique and Cytochemistry;Graeme P. Berlyn and Jerome P Micksche.

Paper Code: PS02EGEN24	Total Credits: 4
Title of Paper: Toxicology	

Unit	Description in detail	Weightage
1	Definition and scope of toxicology: Eco-toxicology and its	25 %
	environmental significance.	
	Toxic effects : Basic for general classification & nature. Dose-	
	Response relationship:	
	Synergism and Antagonism, Determination of ED50 & LD50. Acute	
	and Chronic exposures.	
	Factors influencing Toxicity. Pharmacodynamics & Chemodynamics,	
	dose conversion between animals and human	
	Diagnosis of toxic changes in liver and kidneys : Metabolism of	
	drugs: paracetamol and asprin with their toxic effects on tissues.	
2	Xenobiotics Metabolism: Absorption & distribution. Phase I	25 %
	reactions. Oxidation, Reduction, Hydrolysis and Hydration. Phase II	
	conjugation Detoxification	
	Biochemical basis of toxicity: Metabolism of Toxicity : Disturbances	
	of Exitable membrane function Altered calcium Homeostasis	
	Covalent binding of cellular macromolecules & Genoatoxicity Tissue	
	specificity of Toxicity	
	Toxicity testing: Test protocol. Genetic toxicity testing &	
	Mutagenesis assavs: In vitro Test systems – Bacterial Mutation Test.	
	Ames Test, Fluctuation Tests, In vivo Mammalian Mutation tests –	
	DNA repair assays, Chromosome damage test, Evaluation of	
	Apoptosis and necrosis	
3	Pesticide toxicity: Insecticides : Organochlorines, Anti cholinesterases	25 %
	- Organophosphates and Carbamates, Fungicides. Herbicides,	
	Environmental consequences of pesticide toxicity.	
	Biopesticides.	
	Food Toxicity: Role of diet in cardio-vascular disease and cancer.	
	Toxicology of food additives.	
4	Metal Toxicity: Toxicology of Arsenic, mercury, lead and cadmium.	25 %
	Environmental factors, affecting metal toxicity effect of light,	
	temperature & pH.	
	Air pollution: Common air Pollutant & their sources. Air pollution &	
	ozone. Air pollution due to chlorofluorocarbons (CFCS) and asbestos.	

References:

1. Klaassen, C. D (8th Eds.). (2013). Casarett and Doull's toxicology: the basic science of poisons . New York: McGraw-Hill.

2. John A. Timbrell (4th Edn) (2008) Principles of biochemical toxicology. Taylor & Francis Ltd, London,.

3. Smart, R. C., & Hodgson, E. (4th Eds.). (2013). Molecular and biochemical toxicology. John Wiley & Sons.

4. Relevant review articles / research papers / handouts of latest development in the subject.