SARDAR PATEL UNIVERSITY Programme: MSC (Genetics) Semester: I Syllabus with effect from: June 2010

Paper Code: PS01CGEN01	
Title Of Paper: Cell & Molecular Biology	

Total Credits: 4

Unit	Description in detail	Weightage (%)
1	Cells: Unique characteristics of Cells. Structure and Organization of pro-and	
	eukaryotic cells. An overview of cell cycle and cell divisions. Nucleus:	
	Structure of the nuclear envelope, organization and regulation of nuclear pore	
	complex. Transport across nuclear membrane, internal organization of the	
	nucleus and nucleolus, the nucleus during mitosis. Chloroplast and	
	Mitochondria: Similarities and dissimilarities, structural organization in	
	relation to function, genome. DNA structure: Chemistry of DNA, Forces	
	stabilizing DNA structure, Helix parameters, Forms of DNA (A, B, C, D, T,	
	and Z), Watson –Crick and Hoogsteen base pairing, Physical properties of ds	25 %
	DNA (UV-Absorption spectra, Denaturation and Renaturation, Cot curves,	
	DNA hybridization), Chemicals that react with DNA. DNA topology: DNA	
	supercoiling, Supercoiled forms of DNA, Superhelical density, Biology of	
	supercoiled DNA (Topological domains of DNA, DNA topoisomerases,	
	Mechanisms of supercolling in cells, Mechanism of action of Topolsomerase I	
	and II, effect of superconfing on structure of DNA and role of superconfing in	
	gene expression and DNA replication). Organization of DNA into	
	bacterial cells: Packaging of DNA in eukaryotic nucleosome and chromatin	
	condensation assembly of nucleosomes upon replication Chromatin	
	modification and genome expression DNA-protein Interactions : General	
	features. Interaction of Helix-turn Helix motif. B-sheet, Zn-DNA binding	
	domains with DNA.	
2	DNA replication: Mechanism of DNA polymerase catalyzed synthesis of	
	DNA, Overview of replication in prokaryotes, Types and function of eukaryotic	
	DNA polymerases, initiation of replication in eukaryotes, role of telomerases in	25 %
	replication of eukaryotic chromosomes. Inhibitors of DNA replication	
	(blocking precursor synthesis, nucleotide polymerization, altering DNA	
	structure).	
3	Transcription : RNA polymerases, features of prokaryotic and eukaryotic	
	promoters, assembly of transcription initiation complex in prokaryotes and	
	eukaryotes and its regulation; synthesis and processing of prokaryotic and	
	eukaryotic transcripts. Transport of KNA within eukaryotic cell.	25.0/
	synthesis and processing of proteome. Structure and fore of t-KNA in protein	25 70
	translation (initiation elongation and termination in detail in prokaryotes as	
	well as enkaryotes) Posttranslational processing of proteins (protein folding	
	processing by proteolytic cleavage, processing by chemical modification	
	Inteins), Protein degradation.	
4	Regulation of gene expression in prokaryotes and eukaryotes: Operon	
	Concept, positive and negative regulation. Examples of lac-, ara-, his- and trp	25 %
	operons, Antitermination, Global regulatory responses. Regulation of gene	
	Expression in eukaryotes.	

Basic Text & Reference Books:

- Cell Biology: organelle structure and function by David. E. Sadava, Jones and Bartlett Publishers, Boston, 1993. ISBN: 978-8123914084.
- Cell and Molecular Biology (1987), 8th Edn. De Robertis, E. D. P. and De Robertis, E. M. F. Jr., Lea & Febiger, USA (Indian Edition: B. I. Publications Pvt. Ltd. ISBN: 0-7817-3493-2.
- Genes IX: by Lewin, Benjamin., Jones & Bartlett Publishers, Boston., ISBN: 978-0-7637-5222-4.
- Molecular Biology of the Gene: by Watson, James D. et al., Pearson Education (low price edition), Fifth edition, ISBN: 81-7758-181-3.
- ➤ Genomes 3 by Brown, T. A. Garland Science, New York. ISBN: 0-8153-4138-5.
- Molecular Genetics of Bacteria, 3rd edition, by Snyder Larry & Champness Wendy, ASM Press, Washington, D.C. ISBN: 978-1-55581-399-4.
- Topic related recent review articles.

