

SARDAR PATEL UNIVERSITY

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2021-2022

Master of Science (Electronics) M.Sc. (Electronics) Semester II

Course Code	PS02EELE52	Title of the Course	Advanced Electronic Science & Devices
Total Credits of the Course	4	Hours per Week	3 + 1=4 Hours

Course	1. To teach the physical principles and operational
Objective	characteristics of advanced semiconductor electronic
	devices with emphasis on metal-oxide systems, bipolar,
	high-electron mobility, and field-effect transistors.
	2. To get aware about quantum point contact and
	tunneling devices.
	3. To provide advanced background in solid state
	electronic devices
	4. To help students to continue advanced research in the
	variety of different branches of semiconductor
	microelectronics.

Course	Content	
UNIT	Description	Weightage*
1	Review of scattering mechanisms and conduction process in semiconductors, High-field transport and breakdown phenomena, Boltzmann transport equation and Monte Carlo simulation, Field-effect devices and their structures with working mechanisms, Submicron MOSFET.	25
2	Fowler-Nordheim tunneling, SOI MOSFET, MESFET, Permeable base transistor (PBT), Modulation doping, GaAs-MODFET, Band structure and device behavior, Current-Voltage characteristics, Carrier transport in MODFET, Quantum Hall-effect.	25
3	Potential effect devices, BJT limitations, Hetero structures and types, Silicon based HBTs, GaAs based HBTs, Hetero junction LEDs and LASERs, Hot electron transistors, Nanoelectronics and Quantum Hetero structures, Quantum wells, Quantum wires, Quantum dots.	25
4	Super lattices, Lattice mismatched interfaces, strained layer super lattices, Nanoelectronics and Quantum effect devices, Resonant tunneling diode, Resonant tunneling transistor, Optical devices based on quantum and nanostructures.	25

SARDAR PATEL UNIVERSITY

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2021-2022

Teaching-	Traditional Classroom teaching with use of Multimedia
Learning	facility in the classroom. Use of Computer Tool for live
Methodology	demonstration and problem / design based approach.

Eval	uation Pattern	
Sr.	Details of Evaluation	Weightage
No		
1	Internal Written/Practical Examination(As per CBCS	15%
	R.6.8.3)	
2	Internal Continuous Assessment in the form of	15%
	Practical, Viva Voce, Quizzes, Seminars, Assignments,	
	Attendance (as per CBCS R6.8.3)	
3.	University Examination	70%

Cou	Course Outcome. Having completed this course, the learner will be able to	
1	Understand the details of operation of the advanced semiconductor	
	electronic devices,	
2	Know the parameters of electronic devices that govern their	
	performance and limitations,	
3	Familiar with tendency in contemporary microelectronics and	
	principles of the nano-scale electronic devices.	

Suggeste	Suggested References:	
Sr. No.	References	
1	High Speed Semiconductor Devices	
	S. M. Sze, (John Wiley & Sons Inc., N.Y., USA)	
2	Low dimensional Semiconductors: Materials, Physics,	
	Technology & Devices	
	M. J. Kelly, (Clarendon Press, Oxford, USA)	
3	Physics of Semiconductors and their Hetero structures	
	J. Singh, (Mc-Graw Hill, N.Y., USA)	
4	Fundamentals of Semiconductor Theory and Device Physics	
	Shyh Wang, (Prentice Hall International Inc. N.J., USA)	
5	Semiconductor Optoelectronic Devices	
	P.Bhattacharya, (Prentice Hall of India, New Delhi, INDIA)	

On-line resources to be used if available as reference material
On line resources.
1. ece.umd.edu/course-schedule/course/ENEE413
2. www.mccormick.northwestern.edu/electrical
3. On Line Video lectures on Advanced Electronic Devices -NPTEL

