

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

PROGRAMME STRUCTURE MSc (Electronics) Semester: IV

	THE (Litett ones) beinester 17
Programme Outcome (PO) - For MSc Electronics Programme	 PO.1 The course begins with the foundation concepts of core electronics allied fields PO.2 The curriculum is designed to train the students in basic and advanced areas of Electronics by Keeping in mind the latest advances in the field. PO.3 The purpose of this course is to inculcate skills that are relevant for industry and cater to the requirements of the R & D Department and Industry. PO.4 This M.Sc. Program enables student to develop Speaking Presentation skills, they are encouraged to deliver seminars on a wide range of topics covering the different areas of Electronics.
Programme Specific Outcome (PSO) - For MSc Electronics Semester	PSO.1 M.SC. (Electronics) Program aims to develop specialized knowledge and skills both in the field of electronics for industrial automation and of the design of electronics systems. PSO.2 This course focuses on concepts relating to the Fabrication & Operation of semiconductor devices, measurement methodologies and the characteristics of sensors and instrumentation, embedded systems, VLSI Technology, Integrated Circuit manufacturing techniques, Optical Fiber communication systems, Computer Hardware etc. PSO.3 The main objective is to develop the ability and skills to understand, manage and promote technological innovation while adapting to the rapid changes typical of high technology sectors.

To Pa	ass	At least 40% Marks in the University Examination in each paper and 40% Marks in the aggregate of University and Internal examination in each course of
		Theory, Practical & 40% Marks in Viva-voce.

CORE	PS04CELE51	IC Fabrication Technology	T	4	3	30	70	100
COURSE	PS04CELE52	Optical Fiber Communication System	T	4	3	30	70	100
	PS04CELE53	Sensor Technology	T	4	3	30	70	100
	PS04CELE54	Practical	P	4	3	30	70	100
	PS04CELE55	Project Work	P	4	3	30	70	100
	PS04CELE56	Comprehensive Viva	=	1	=	=	50	50

Vallabh Vidyanagar, Gujarat

ELECTIVE	PS04EELE51	Design of VLSI Systems	T	4	3	30	70	100
COURSE	PS04EELE52	Computer Based Industrial Control	T	4	3	30	70	100
(Any One)	PS04EELE53	Principles of Nano-Electronics	T	4	3	30	70	100
	PS04EELE54	Advanced Digital Systems Design with HDL	T	4	3	30	70	100
	PS04EELE55	CMOS Technology & VLSI Design	T	4	3	30	70	100
Total Credits :			25		7	Total Marks:	650	

Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

			Theory		Exam	Comp	onent of Ma	rks
Course Type	Course Code	Name Of Course	Theory/ Practical	Credit	Duration	Internal	External	Total
			Fractical	aı	in hrs	Total	Total	Total
	PS01CELE51	Semiconductor Science and Devices	T	4	3	30	70	100
Core Course	PS01CELE52	Applications of ICs And Fuzzy Electronics	T	4	3	30	70	100
	PS01CELE53	8 Bit Microcontroller and Applications	T	4	3	30	70	100
	PS01CELE54	Practical	P	4	3	30	70	100
	PS01CELE55	Project Work	P	4	3	30	70	100
	PS01CELE56	Comprehensive Viva	=	1	=	=	50	50
Elective	PS01EELE51	Analytical and Bio Medical Instruments	T	4	3	30	70	100
Courses	PS01EELE52	Network Analysis	Т	4	3	30	70	100

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

Master of Science in Electronics M.Sc.(Electronics) Semester IV

Course Code	PS04CELE51	Title of the Course	IC Fabrication Technology
Total Credits of the Course	4	Hours per Week	3+1 = 4 Hours

Objectives:	1.To learn each major IC fabrication process steps eg. Wafer Preparation,Epitaxy, oxidation, doping, depositions, lithography, etching, Annealing.2.To know IC packaging.
	2.10 know ic packaging.

Course	Course Content			
Unit	Description	Weightage*		
1.	Semiconductor Materials, Crystal Structures, Energy Bands, Intrinsic Career Concentration, Donors and Acceptors, Electron Mobility, Resistivity and Conductivity, Crystal Growth, Electronic Grade Silicon, Czochralski Crystal Growth, Float-Zone Process, Characterization, Wafer Preparation, Fabrication of IC, Epitaxy, Chemical Vapor Deposition, Growth Model, Growth Chemistry, Doping and Autodoping, Reactors, Defects, Selective Epitaxial Growth, Low-Temperature Epitaxy (LTE) and Molecular Beam Epitaxy (MBE), Rapid Thermal Epitaxy (RTE).	25		
2.	Oxidation, Theory of Oxide Growth, Experimental Fits- Orientation Dependence and Effects of Impurities, High Pressure Oxidation, Plasma Oxidation, and Rapid Thermal Oxidation, Oxide Properties, Dopant Redistribution at the Interface, Lithography, Clean Room, Optical Lithography, Masks, Photoresist, Pattern Transfer, Electron Lithography, X-Ray Lithography, Ion Lithography, Comparison of Lithographic Techniques	25		
3.	Etching, Wet Chemical Etching, Dry Etching, Plasma Excitation and Plasma - Surface Interaction, Simple Plasma Etching Systems, Diffusion, Diffusion Theory, Diffusion Profiles, Constant-Surface-	25		

Vallabh Vidyanagar, Gujarat

	Concentration Diffusion, Constant-Total-Dopant Diffusion, Dual Diffusion Process, Extrinsic Diffusion, Diffusion in Silicon, Oxide Masking, Lateral Diffusion, Fast Diffusants, Diffusion in Polysilicon, Ion Implantation, Implant Uniformity, Contamination	
4.	Annealing, Furnace annealing, Rapid Thermal Annealing, Metallization, Metallization Choices, Metal Corrosion, Testing-Assembly and Packaging of IC, Die Bonding and Wire Bonding, Flip-Chip Technique, Hermetic and Plastic Packages, Through-Hole and Surface-Mount Packages, Tape Carrier Packages.	25

Teaching-	Lectures, Seminars and tutorials, Independent study, Laboratory and
Learning	practical learning, Field trips, Problem-based/enquiry-based learning,
Methodology	Projects, e-learning

Evalu	Evaluation Pattern				
Sr. No.	Details of the Evaluation	Weightage			
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%			
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%			
3.	University Examination	70%			

Cou	Course Outcomes: Having completed this course, the learner will be able to				
1.	Understand integrated silicon based devices' process steps				
2.	Understand all silicon fabrication processes, their metrologies and related theory.				
3.	Develop an understanding of the complexities involved in a complete fabrication cycle of an integrated circuit.				

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

Sugges	Suggested References:			
Sr. No.	References			
1.	VLSI Technology S. M. Sze, (Mc Graw-Hill International Edition, N.Y, U.S.A.)			
2.	VLSI Technology Sujata Pandey & Manoj P Pandey (Dhanpat Rai & Co. New Delhi, INDIA)			
3.	The Science and Engineering of Microelectronic Fabrication Stephen A Campbell, (Oxford University Press Inc. N.Y., U.S.A.)			
4.	Semiconductor Devices - Physics and Technology S. M. Sze, (John Willey & Sons Inc., U.S.A.)			
5.	Modern Semiconductor Fabrication Technology Peter Gise & Richard Blanchard (Reston Book - Prentice Hall, N.J., U.S.A.)			
6.	Integrated Circuits K.R.Botkar (Khanna Publishers, New Delhi, INDIA)			

On-line resources to be used if available as reference material

On-line Resources

 $1. \underline{https://nptel.ac.in/content/storage2/courses/113106062/Lec1.pdf} \ to$

https://nptel.ac.in/content/storage2/courses/113106062/Lec31.pdf (please change Lec

Number in given link address)

2.https://www.youtube.com/results?search_query=ic+fabrication+process+steps

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

> Master of Science (Electronics) M.Sc. (Electronics) Semester IV

Course Code	PS04CELE52	Title of the Course	Optical Fiber Communication System
Total Credits		Hours per	3+1=4 Hours
of the Course		Week	

Course Objectives:	1. To introduce to the learners the principle of transmission of guided light through optical fiber, the types of the Fiber cables,				
	modes of propagation and possible losses and dispersion in the				
	transmission.				
	2. To provide an understanding about the Light Sources for				
	Optical Fibers, mainly various types of LED and Lasers and also Detectors.				
	also Detectors.				
	3. To generate an understanding about the Fiber optic				
	communication systems.				

Course	Course Content				
Unit	Description	Weightage*			
1.	Light propagation through Optical Fibers, Ray theory, meridional rays, skew rays, Types, Characteristics and data rates in optical fibers, Modes in fibers, Losses and Dispersion in Optical Fibers, Fiber materials, Fiber splicing, connectors, couplers and switches, connection losses.	25			
2.	Optical processes in semiconductors - Optical absorption and emission, Spontaneous and stimulated emission Optical sources –LED-working process of simple PN Junction LED, Special Class LEDs- Double Hetero-junction LED, Edge Emitting LED, Surface Emitting LED, LASER- Distributed feedback Laser, Quantum—well Lasers, Drive Electronics-	25			

Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

	LED drivers, Laser diode drivers.	
3.	Optical detectors- Principle of operation- photo detectors, P-N, PIN, Avalanche photodiode, Phototransistor, Responsivity and Quantum Efficiency of Photo detectors, Delectability, Noise and bandwidth, Detector circuitry and receivers.	25
4.	Fiber optic communication system –Optical Time Division Multiplexing, Wave length Division Multiplexing-Demultiplexing, Optical Fiber measurement and field testing-Equipment used in field testing-Optical Power meter, Optical Time Domain Reflectometer (OTDR), Application of Fiber optics- Long –Haul communication, ISDN.	25

Teaching-	Classroom Teaching (Offline/Online), learning from online resources
Learning	
Methodology	

Evaluation Pattern			
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%	
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%	
3.	University Examination	70%	

Course Outcomes: Having completed this course, the learner will be able to

Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25)

Syllabus with effect from the Academic Year 2022-2023

- Know about the principle of working of optical fiber based systems. 1.
- 2. Get an idea about the various types of sources and detectors that can be used for optical fiber communication systems
- 3. Have an understanding about the working of optical fiber based communication systems.

Sugges	Suggested References:		
Sr. No.	References		
1.	Optical Fiber Communication- Principle and practice John M. Senior (2010), Prentice Hall of India.		
2.	Fiber optic communication and other applications Henry Zanger & Cynthia Zanger (1991), Maxwell Macmillan International Edition.		
3.	An Introduction to Optical Fibers Allen H. Cherin (1983), Mcgrow Hill International Edition.		
4.	Optical Fiber Communication Gerd Keiser (2017), Mcgrow Hill International Edition.		

On-line resources t	o ha usad it	f available as i	rafaranca material
Un-line resources i	o be iisea ii	i avananie as i	reference maierial

On-line Resources

- 1.https://www.youtube.com/watch?v=WA0eHT3sfS0
- 2.https://nptel.ac.in/content/storage2/courses/117101054/downloads/lect9.pdf
- 3.https://nptel.ac.in/content/storage2/courses/113106062/Lec18.pdf
- 4.https://nptel.ac.in/content/storage2/courses/117101054/downloads/lect19.1.pdf

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

Master of Science (Electronics) M.Sc. (Electronics) Semester IV

Course Code	PS04CELE53	Title of the Course	Sensor Technology
Total Credits	1	Hours per	3+1=4 Hours
of the Course	4	Week	

Course	1. In depth study of science, technology and applications of Sensors.			
Objectives:	2. To develop an understanding of the classification and the			
	performance parameters of Sensors to facilitate the learner to			
	compare various sensors and select the most suitable sensor for the			
	need of the challenge.			
	3. To make the learners apply sensors applications in various fields			
	such as modern home, agriculture, industries, automobile,			
	transportation and defence.			

Course	Course Content			
Unit	Description	Weightage* (%)		
1.	Importance of Sensors, Introduction, Classification of Sensors, Sensor Parameters- Static and Dynamic, Errors in Measurements, Standards of Measurement, Integrated Sensors, Bus-organized sensing system.	25		
2.	Chemical Sensors: Characteristics, Specific Difficulties, Classification, Metal Oxide Semiconductor Gas Sensors, Chem FET, Electronic Nose, Electrochemical sensors, Lambda Probe, Pellistor, Fiber Optic Sensors (FOSs), Basic Concepts, Architecture of Fiber Optics Sensors (FOSs), Applications- Temperature, Liquid Level, Fluid Flow and Microbend Sensor, FOS in Medical and Military Applications.	25		
3.	Resonating Quartz Sensors, Piezoelectricity, Resonance and Quartz properties, Applications, QCM, Surface Acoustic Wave Sensors (SAW), SAW Sensors Operation- Chemical and Physical Sensors,	25		

Vallabh Vidyanagar, Gujarat

	Magnetic Field Sensors, Mechanical Sensors, Optical and radiation (Infrared/thermal) sensors, Ultrasonic sensors.	
4.	Biosensors - Introduction and Definition, Receptor: Molecular Recognition Element Immobilization methods, Silicon Micromachining - Introduction, IC Technologies and Micromachining methods, Silicon Sensors, Micro Electro Mechanical Sensors (MEMs), Smart Sensors, Wireless sensors network.	25

Teaching-Learning	Classroom Teaching (Offline/Online), learning from online
Methodology	resources

Evalu	Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%	
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%	
3.	University Examination	70%	

Cou	rrse Outcomes: Having completed this course, the learnerwill be able to
1.	Get a complete idea about the modern generation of sensors for various applications
2.	Avail the basic understanding for the comparative analysis of various sensors and systems.
3.	Attain knowledge about the types of sensors which are very important today but the learner did not come across so far.

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

Sugges	Suggested References:		
Sr. No.	References		
1.	Measurement and Instrumentation System W.Bolton (1998), Butterworth-Heinemann Publisher		
2.	Sensors for Domestic Application Alnaldo D'Amico and Giorgio Sbeveglieri (1995), World Scientific Co. (USA)		
3.	Sensors and Transducers (2 nd ed.) D. Patranabis (2003), Prentice/Hall of India Private Limited, New Delhi (INDIA)		
4.	Advance in Biosensor.(1sr. ed.) Bansi Malhotra Anthony Turne (Ed.) (2003) ,Jai Press Ltd., New Delhi (INDIA)		
5.	Biosensors - An Introduction Brian Eggins (1996), Wiley Teuiner Publications		
6.	Biosensors Principles & Applications Loic J. Blum and Pierre R. Coulet (Ed.) (1991), Marcel Dekker, Inc. (USA)		
7.	Handbook of Modern Sensors Physics, Designs and Applications Fraden, Jacob (2016), Springer.		
8	Sensor Technology Handbook Jon S. Wilson (2005), Elsevier /Newnes (London)		

On-line resources to be used if available as reference material

On-line Resources

- 1. https://link.springer.com/boo/10.1007/978-1-4302-6014-1
- 2.https://www.figarosensor.com/technicalinfo/principle/catalytic-type.html

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

Master of Science (Electronics)

M.Sc. (Electronics) Semester IV

Course Code	PS04EELE51	Title of the Course	Design of VLSI Systems
Total Credits of the Course	4	Hours per Week	3+1=4 Hours

G 01:	
Course Objective	1. To Study digital system and VLSI design
	methodology.
	2. Design for testability and design verification.
	3. Learn methods to improve digital VLSI systems
	performance: reliability, manufacturability, cost,
	power, security, etc.
	4. Learn hardware design language (HDL).
	Implementing the HDL code on FPGA and CPLD

Course	Content	
UNIT	Description	Weightage*
		(%)
1	An overview of VLSI, VLSI Design Methodology,	
	Design Flow, VLSI Road Map, Logic Design with	
	MOSFET, Elements of Physical Design. System level	
	physical design: Large scale physical design,	25
	Interconnectivity, Delay model, Cross talk, Floor	
	Planning & Routing, I/O Circuits, Power Distribution	
	& Consumption, Clock Distribution	
2	Reliability & testing of VLSI Circuits: Introduction	
	to Testing of VLSI Circuits, Fault Models, Gate level	
	testing, Boundary Scan testing, Ad-hoc Testing, Test	25
	Generation Methods, D-Algorithm, Introduction to	
	ATPG.	

Vallabh Vidyanagar, Gujarat

3	System Specification using HDL, Introduction to HDL, VHDL modeling concept, Scalar data type & operations in VHDL, Sequential statements, Composite data type, Basic Modeling Constructs.	25
4	Subprogram in VHDL, Packages & USE Clauses, VHDL standard package-1164, Alias, Constants, Components and configurations, Files and Input/Output. Designing with Programmable Logic Devices, Digital Design with State Machine chart, Designing with FPGAs & CPLDs, VHDL model for memory buses.	25

Iultimedia
and

Evaluation Pattern		
Sr. No	Details of Evaluation	Weightage
1	Internal Written / Practical Examination (As per	15%
	CBCS R.6.8.3)	
2	Internal Continuous Assessment in the form of	15%
	Practical, Viva Voce, Quizzes, Seminars,	
	Assignments, Attendance (as per CBCS R6.8.3)	
3	University Examination	70%

Vallabh Vidyanagar, Gujarat

Cou	Course Outcome. Having completed this course, the learner will be able to		
1	Design complex digital systems using VLSI design methodology.		
2	Design a digital system using given specifications and design		
	constraints.		
3	Plan and choose digital system testing strategy		
4	Plan digital system verification strategy		

Sugg	Suggested References:		
Sr.	References		
No.			
1	Introduction to VLSI Circuits & Systems		
	John P. Uyemura, John Willey & sons (Asia) Pvt Ltd. NY,(USA)		
2	The Designer guide to VHDL		
	Peter J Ashenden, Harcourt India Pvt. Ltd., N.Delhi (INDIA)		
3	Digital logic design principles		
	Norman Balabanian & Bradely Carlson,		
	John Willey & Sons Pvt. Ltd NY,(USA)		
4	Modern VLSI Design: System on Silicon		
	Wayne Wolf, Pearson education - Prentice Hall, New Delhi (INDIA)		
5	Principles of CMOS VLSI Design: A system perspective		
	Neil H.E., Weste and Kamran Eshraghian		
	Pearson Education -Prentice Hall New Delhi (INDIA)		
6	Digital Integrated Circuits: A Design Perspective		
	Jan M. Rabeay, Anantha Chandrakasan and Borivoje Nikolic		
	Prentice Hall of India (EEE), New Delhi (INDIA)		
7	Digital Systems Design using VHDL		
	Charles H. Roth Jr., Thomson Brooks/ Cole (USA)		

AN AND MANAGEMENT OF THE PARTY OF THE PARTY

SARDAR PATEL UNIVERSITY

Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

On-line resources to be used if available as reference material

On line resources.

1. Video lectures on VLSI Design by NPTEL

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

Master of Science (Electronics)

M.Sc. (Electronics) Semester IV

Course Code	PS04EELE52	Title of the Course	Computer Based Industrial Control
Total Credits of the Course	4	Hours per Week	3+1=4 Hours

Course Objective	1. To Focus on various Control schemes used in the	
	Industrial Environment	
	2. Monitoring, controlling various parameters in	
	the field via Computerized Network.	

Course	Content	
UNIT	Description	Weightage*
		(%)
1	Expectations from Automation, Current trends in	
	Computer Control of Process Plants, Process	
	Definition, Feedback Control, Basic Principles of	
	Single controller loop, Two-position Control, Multi-	
	position control, Proportional Integral Derivative	25
	Control, Multi-variable Control, Feed Forward	
	Control, Introduction of Building Blocks of	
	Automation System, Processing System,	
	Multimicroprocessor Systems.	

Vallabh Vidyanagar, Gujarat

2	Local Area Networks, Analog and digital I/O Modules, Supervisory control and Data Acquisition Systems, Remote Terminal Unit, Direct Digital Control-Structure and Software. Distributed Digital Control, History, Functional Requirements of (Distributed) Process Control System, System	25
	Architecture, DCS, Final Control Element- Pneumatic, Hydraulic; Electric Actuation.	
3	Introduction to Intelligent Controllers, Model Based Controllers, Predictive control, Artificial Intelligent Based Systems, Expert Controller, Fuzzy Logic System. Fuzzy Controller. Fuzzy Logic Tools, Conventional Control Systems, Fuzzy Logic Control Systems, Fuzzy Logic Control.	25
4	Examples of Industrial Applications of FLC, Stability, Neural Controllers, VLSI Implementation of Neural Network. Fuzzy Neural Networks-Fuzzy Multilayer Perception, Fuzzy competitive Learning, Fuzzy Art, Fuzzy Min-Max Networks, Fuzzy Neurons, Fuzzy Neural Control Systems.	25

Teaching-	Traditional Classroom teaching with use of Multimedia		
Learning	facility in the classroom, Use of Computer Tool for		
Methodology	live demonstration and problem / design based		
	approach.		

Vallabh Vidyanagar, Gujarat

Evaluation Pattern			
Sr. No	Details of Evaluation	Weightage	
1	Internal Written / Practical Examination (As per	15%	
	CBCS R.6.8.3)		
2	Internal Continuous Assessment in the form of	15%	
	Practical, Viva Voce, Quizzes, Seminars,		
	Assignments, Attendance (as per CBCS R6.8.3)		
3	University Examination	70%	

Cou	Course Outcome. Having completed this course, the learner will be able to		
1.	Have knowledge of various aspects of Industrial Control schemes.		
	Managed by PLC, DCS, SCADA etc.		
2.	Get understanding of control applications used in Industry.		
3.	Develop application models based on Fuzzy logic.		

Sugg	Suggested References:		
Sr.	References		
No.			
1.	Computer based Industrial Control		
	Krishna Kant, Prentice Hall of India, New Delhi (INDIA)		
2.	Introduction to Applied Fuzzy Electronics		
	Ahmad M. Ibrahim, Prentice Hall of India, New Delhi (INDIA)		
3.	Industrial Automation : Hands On		
	Frank Lamp, Kindle Edition		

On-line resources to be used if available as reference material
On line resources.
1. On Line Video Lectures on Industrial Automation and control - NPTEL

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

Master of Science (Electronics)

M.Sc.(Electronics) Semester IV

Course Code	PS04EELE53	Title of the Course	Principles of Nano-Electronics
Total Credits of the Course	4	Hours per Week	3+1=4 Hours

Course Objective	1. To introduce the students about nanoelectronics
	and nanodevices,
	2. To identify quantum mechanics behind
	nanoelectronics.
	3. To describe the principle and the operation of
	nanoelectronic devices.

Course	Content	
UNIT	Description	Weightage*
1	Dimensionality and ideal semiconductor nanostructure, density of states, Quantum size effects and density of states for two dimensional systems, Superlattices, Electron states in quantum wells, wires and dots, Gate oxide tunneling in MOSFETs, Fowler-Nordheim tunneling.	25
2	Double barrier tunneling and resonant tunneling diode, Resonant tunneling transistor, Coulomb blockade in a nano capacitor, Tunnel junction and its excitation by current source, Coulomb blockade in a quantum dot circuit, Coulomb staircase.	25

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

3	Semiconductor quantum hetero and nano structures,	
	Modulation doping, Energy band transitions in	
	quantum wells, quantum wires and nano wires,	25
	Quantum dots and nano particles, Ballistic	23
	transport, Transport model, Quantum resistance and	
	conductance.	
4	Carbon nano tubes and carbon nano wires, Nano	
	scale wire radius, Transport of spin and	
	Spintronics, Single electron transistor, Carbon nano	25
	tube transistor, Nano tube hetero junction, Nano	23
	tube field effect transistor, Graphene in nano	
	electronic systems.	

Teaching-	Traditional Classroom teaching with use of Multimedia
Learning	facility in the classroom.
Methodology	Use of Computer Tool for live demonstration and
	problem / design based approach.

Evaluation Pattern		
Sr. No	Details of Evaluation	Weightage
1	Internal Written / Practical Examination (As per	15%
	CBCS R.6.8.3)	
2	Internal Continuous Assessment in the form of	15%
	Practical, Viva Voce, Quizzes, Seminars,	
	Assignments, Attendance (as per CBCS R6.8.3)	
3	University Examination	70%

Course Outcome. Having completed this course, the learner will be able to

Vallabh Vidyanagar, Gujarat

1	Learn the fundamental science and quantum mechanics behind
	nanoelectronics
2	Differentiate between microelectronics and nanoelectronics

Sugg	Suggested References:		
Sr.	References		
No.			
1	Fundamentals of Nanoelectronics		
	George W. Hanson, Pearson Education, New Delhi, INDIA		
2	Nanoelectronics		
	A.S. Bhatia, NuTech Books, New Delhi, INDIA		
3	Low Dimensional Semiconductors: Materials, Physics, Technology &		
	Devices		
	M.J.Kelly, Clarendon Press Oxford, N.Y., USA		
4	Nanoelectronics: Principles and Devices		
	Mircea Dragoman and Daniele, Artech House Publication, N.Y. USA		
5	Semiconductor Heterojunctions and Nanostructures		
	Omar Manasreh, McGraw Hill, N.Y., USA		
6	Quantum Wells, Wires and Dots		
	P.Harrison, Wiley, N.Y., USA		
7	Silicon Nanoelectronics		
	Shunri Oda and David Ferry, Taylor & Francis, N.Y., USA		

On-line resources to be used if available as reference material
On line resources.
1. www.slideshare.net/tabirsir/nanoelectronics-pptfinal
2. ww.melbhattan.com/nanoelectronics
3. web.stanford.edu/~hspwong/EE 218 - Section 0

Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25)

Syllabus with effect from the Academic Year 2022-2023

Master of Science (Electronics)

M.Sc.(Electronics) Semester IV

Course Code	PS04EELE54	Title of the Course	Advanced Digital Systems Design with HDL
Total Credits of the Course	4	Hours per Week	3+1=4 Hours

Course Objective	1. To understand sequential and combinational logic	
	design techniques	
	2. To introduce HDL	
	3. To learn various digital circuits using HDL	
	4. To learn PLD, CPLD, FPGA and their applications	

Course Con	ntent	
UNIT	Description	Weightage*
		%
1	Introduction: Introduction to Computer-aided	
	design tools for digital systems. Hardware	
	description languages; introduction to VHDL,	
	data objects, classes and data types, Operators,	25
	Overloading, logical operators. Types of delays	
	Entity and Architecture declaration. Introduction	
	to behavioral, dataflow and structural models.	

Vallabh Vidyanagar, Gujarat

2	VHDL Statements: Assignment statements, sequential statements and process, conditional statements, case statement Array and loops, resolution functions, Packages and Libraries, concurrent statements. Subprograms: Application of Functions and Procedures, Structural Modelling, component declaration, structural layout and generics.	25
3	Sequential and Combinational Circuit Design: VHDL Models and Simulation of combinational circuits such as Multiplexers, Demultiplexers, encoders, decoders, code converters, comparators, implementation of Boolean functions etc. Sequential Circuits Design: VHDL Models and Simulation of Sequential Circuits Shift Registers, Counters etc.	25
4	Prototyping and case studies: Design with CPLDs and FPGAs: Programmable logic devices: ROM, PLAs, PALs, GAL, PEEL, CPLDs and FPGA. Design implementation using CPLDs and FPGAs Design of Microcomputer: Basic components of a computer, specifications, architecture of a simple microcomputer system, implementation of a simple microcomputer system using VHDL Reference	25

Teaching-	Traditional Classroom teaching with use of Multimedia
Learning	facility in the classroom.
Methodology	Use of Computer Tool for live demonstration and
	problem / design based approach.

Vallabh Vidyanagar, Gujarat

Evaluation Pattern		
Sr. No	Details of Evaluation	Weightage
1	Internal Written / Practical Examination (As per	15%
	CBCS R.6.8.3)	
2	Internal Continuous Assessment in the form of	15%
	Practical, Viva Voce, Quizzes, Seminars,	
	Assignments, Attendance (as per CBCS R6.8.3)	
3	University Examination	70%

Cou	rse Outcome. Having completed this course, the learner will be able to
1	Design combinational & sequential circuits using VHDL.
2	Integrate combinational & sequential circuits to design a micro architecture
3	Set environment, libraries, synthesis constraints for synthesis
4	Create test benches, run simulations and analyze/debug results to meet specifications

Sugg	Suggested References:	
Sr.	References	
No.		
1	Digital System Design using VHDL	
	Charles. H.Roth; PWS (1998).	
2	VHDL-Analysis & Modelling of Digital Systems	
	Navabi Z; McGraw Hill.	
3	VHDL	
	Douglas L. Perry, Mc Graw Hill Publications	
4	VHDL: Analysis and Modeling of Digital Systems	
	Zainalabedin Navabi, McGraw-Hill	
5	Logic and Computer Design Fundamentals	
	M. Morris Mano	

Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

O 1'	, 1 1	' C ' 1 1 1 1	C	1
On-line resources t	to he liced	it available ac	reterence m	naferial
On-line resources i	io oc uscu	II available as	I CI CI CII CC III	iaiciiai

On line resources.

- 1 .web.itu.edu.tr/~ateserd/VHDL.pdf
- 2. www.ics.uci.edu/~jmoorkan/vhdlref/Synario VHDL..
- 3. atlas.physics.arizona.edu/.../downloads/vhdl/VHDL_Lang.pdf

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

Master of Science (Electronics)

M.Sc.(Electronics) Semester IV

Course Code	PS04EELE55	Title of the Course	CMOS Technology & VLSI Design
Total Credits of the Course	4	Hours per Week	3+1=4 Hours

Course Objective	1. To learn the basic CMOS Circuits.
	2. To acquire knowledge of CMOS Process
	Technology.
	3. To impart in-depth knowledge about analog and
	digital CMOS circuits.

Course Co	ontent	
UNIT	Description	Weightage*
		(%)
1	Introduction CMOS Logic: Gates Suing CMOS.,	
	Pass Transistors and Transmission Gates,	
	Tristates, Multiplexers, Latches and Flip-Flops,	
	CMOS Layout: Inverter Cross section, Layout	
	Design rules, Gate Layout, MOS Transistor	
	Theory: Ideal I-V, C-V Characteristics, Various	25
	MOS Capacitance Models, MOS Gate	23
	Capacitance Model, Channel Length Modulation,	
	Body Effect, Sub threshold Conduction, Junction	
	Leakage, Tunneling, Temp. and Geometry	
	Dependence. DC Transfer characteristics: CMOS	
	Ratioed Inverter Transfer Function.	

Vallabh Vidyanagar, Gujarat

2	CMOS Processing Technology CMOS	
	Technologies: Background, Wafer Formation,	
	Photolithography, Well and Channel Formation,	
	Silicon Dioxide (SiO2), Isolation, Gate Oxide,	
	Gate and Source/Drain Formation, Contacts and	
	Metallization, Passivation, Metrology. Layout	2.5
	Design Rules: Design Rules Background, Scribe	25
	Line and Other Structures, MOSIS Scalable	
	CMOS Design Rules, Micron Design Rules.	
	CMOS Process Enhancements: Transistors,	
	Interconnect, Circuit Elements, Beyond	
	Conventional CMOS.	
3	Circuit Characterization and Performance	
	Estimation Delay Estimation: RC Delay Models,	
	Linear Delay Model, Logical Effort, Parasitic	
	Delay. Logical Effort and Transistor Sizing:	
	Delay in a Logic Gate, Delay in Multistage Logic	25
	Networks, choosing the Best Number of Stages.	
	Power Dissipation: Static Dissipation, Dynamic	
	Dissipation, Low-Power Design. Interconnect:	
	Resistance, Capacitance, Delay, and Crosstalk.	
4	Design Margin: Supply Voltage, Temperature,	
	Process Variation, Design Corners. Reliability,	
	Scaling, Analog Circuits: MOS Small-signal	25
	Model, Common Source Amplifier, The CMOS	23
	Inverter as an Amplifier, Current Mirrors,	
	Differential Pairs and its applications.	

Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

Traditional Classroom teaching with use of Multimedia
facility in the classroom.
Use of Computer Tool for live demonstration and
problem / design based approach.

Evaluation	Evaluation Pattern		
Sr. No	Details of Evoaluation	Weightage.*	
1	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%	
2	Internal Continuous Assessment in the form of Practical, Viva Voce, Quizzes, Seminars, Assignments, Attendance (as per CBCS R6.8.3)	15%	
3	University Examination	70%	

Cour	Course Outcome. Having completed this course, the learner will be able to	
1	Acquire the knowledge about various CMOS fabrication process and	
	its modelling.	
2	Design and implement various structures for low power applications.	
3	Design various CMOS dynamic logic circuits.	
4	Design techniques of low voltage and low power CMOS circuits for	
	various applications.	

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

Sugg	Suggested References:		
Sr.	References		
No.			
1	CMOS VLSI Design		
	Neil H.E. Weste, David Harris, Ayan Banerjee: Third Edition,		
	Pearson Education.		
2	Principle of CMOS VLSI Design		
	Neil H.E. Weste, Kamran Eshraghian, Pearson Education.		
3	Chip Design for Submicron VLSI		
	J. P. Uyemura, Cengage Learning.		
4	CMOS Analog Circuit Design		
	Philip E. Allen and Douglas R Holberg, Oxford.		
5	Introduction to VLSI systems		
	Carver Mead and Lynn Conway, BS Publication		
6	Introduction to VLSI Circuits and Systems		
	J. P. Uyemura, Wiley.		

On-line resources to be used if available as reference material
On line resources.
1. webpages.eng.wayne.edu/cadence/ECE6570/doc/lect1_1.pdf
2. www.egr.msu.edu/classes/ece410/mason/files/Ch3-5.pdf

3. ON LINE Video lectures - NPTEL

