

## M.Sc. Chemistry M.Sc. Chemistry Semester-II

| Course Code                    | PS02CCHE52                                                                                                                                                                                                                                                                                                                                                                      | Title of the<br>Course | Organic Chemistry-II |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------|
| Total Credits<br>of the Course | 4                                                                                                                                                                                                                                                                                                                                                                               | Hours per<br>Week      | 4                    |
| Course<br>Objectives:          | <ol> <li>To learn alkene synthesis reactions, hydroboration chemistry, name<br/>reactions, and their mechanism.</li> <li>To learn transition metal catalyst based C-C, C-N coupling reactions and<br/>their mechanism</li> <li>To understand the role of chemical reagents in the oxidation, reduction,<br/>and transformation of various organic functional groups.</li> </ol> |                        |                      |

| Course Content |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Unit           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Weightage*<br>(%) |
| 1.             | Organic Name Reactions-I and their applications:<br>Robinson ring annulation, Wittig reaction and its modifications;<br>Peterson olefination, Shapiro reaction, Bamford Steven's reaction,<br>Julia olefination                                                                                                                                                                                                                                                                                                                       | 25%               |
| 2.             | Organic Name Reactions-II and their applications:<br>Stork Enamine reaction, Buchwald–Hartwig amination, Suzuki<br>coupling, Sonogashira coupling, Brown's hydroboration reactions,<br>Vilsmeier-Haack reaction, Darzen condensation.                                                                                                                                                                                                                                                                                                 | 25%               |
| 3.             | Oxidation and Reduction Reagents in Organic Synthesis:<br>Oxidation Reagents: CrO <sub>3</sub> , MnO <sub>2</sub> , SeO <sub>2</sub> , Pb(OAc) <sub>4</sub> , HIO <sub>4</sub> , DMSO,<br>HgO, K <sub>3</sub> Fe(CN) <sub>6</sub> , DDQ, Dess-Martin periodinane, Peracid;<br>Reduction Reagents: Al(O- <sup><i>t</i></sup> Bu) <sub>3</sub> , Al(O- <sup><i>t</i></sup> Pr) <sub>3</sub> , Na/NH <sub>3</sub> , Zn/HCl,<br>N <sub>2</sub> H <sub>4</sub> /OH, NaBH <sub>4</sub> , LiAIH <sub>4</sub> , complex metal hydrides, TBTH. | 25%               |
| 4.             | Some Miscellaneous Reagents in Organic Synthesis:<br>Trimethylsilylhalide, LDA, Wilkinson catalyst, alkyl lithium, Grignard<br>reagent, Gilman reagent, PTC, NBS, DCC.                                                                                                                                                                                                                                                                                                                                                                | 25%               |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |





| Teaching-   | To meet the effective teaching and the learning requirements, teaching- |
|-------------|-------------------------------------------------------------------------|
| Learning    | learning methodology comprises classroom teaching, use of e-resources,  |
| Methodology | library books, IT tools, encouraging students to participate in         |
|             | seminars/workshops, presentation by students, assigning work based upon |
|             | subject requirements, etc.                                              |

| Evaluation Pattern |                                                                                                                                         |           |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Sr.<br>No.         | Details of the Evaluation                                                                                                               | Weightage |
| 1.                 | Internal Written / Practical Examination (As per CBCS R.6.8.3)                                                                          | 15%       |
| 2.                 | Internal Continuous Assessment in the form of Practical, Viva-voce,<br>Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3) | 15%       |
| 3.                 | University Examination                                                                                                                  | 70%       |

| Cou | rse Outcomes: Having completed this course, the learner will be able to                                                                                                                   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.  | Propose synthesis for steroidal skeletal structures and selective $\alpha$ -acylation and alkylation on carbonyl compounds                                                                |
| 2.  | Design olefin synthesis using variety of name reactions including Wittig reaction and modifications; Peterson olefination, Shapiro reaction, Bamford Steven's Reaction, Julia olefination |
| 3.  | Get oneself familiarize with useful chemical transformations with regio- and chemo-<br>selectivity using Hydroboration reaction to convert olefins to variety of useful<br>derivatives    |
| 4.  | Appreciate the role of organometallic chemistry in organic synthesis by studying Suzuki coupling, Buchwald–Hartwig amination and Sonogashira coupling reaction                            |
| 5.  | Understand the chemistry involved in oxidation-reduction reactions by employing numerous reagents to appreciate chemo-selectivity of the reagents                                         |
| 6.  | Suggest use of miscellaneous reagents in organic synthesis including Wilkinson catalyst, Grignard reagent and Gilman reagent, PTC, DCC, Peracids, NBS etc.                                |

| Suggested References: |            |
|-----------------------|------------|
| Sr.<br>No.            | References |





## SARDAR PATEL UNIVERSITY Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2021-2022

| 1. | Principles of Organic Synthesis: R.O.C Norman & J. M. Coxon (ELBS).                    |
|----|----------------------------------------------------------------------------------------|
| 2. | Mechanism in Organic Chemistry: Peter Sykes (Orient Longman).                          |
| 3. | Modern Methods of Organic Synthesis: W. Carruthers (Cambridge).                        |
| 4. | Organic Reaction Mechanism: V. K. Ahluwalia and R. K. Parashar (Narosa).               |
| 5. | Organic Chemistry: Clayden, Greeves and Warren(Oxford)                                 |
| 6. | Organic Reactions and Their Mechanism: P. S. Kalsi (New Age International Publishers). |

On-line resources to be used if available as reference material

On-line Resources

\*\*\*\*

