SARDAR PATEL UNIVERSITY VALLABH VIDYANAGAR

SYLLABUS EFFECTIVE FROM: 2018-19 M.Sc. CHEMISTRY SEMESTER-IV INORGANIC CHEMISTRY

(Total 650 marks)

Course Code	Course Title	Hours per week	Internal Marks	External Marks	Total Marks
PS04CINC21	Spectroscopy II	4 hrs	30	70	100
PS04CINC22	Solid State Chemistry and Supra Molecular Chemistry	-do-	30	70	100
PS04CINC23	Bioinorganic Chemistry	-do-	30	70	100
PS04CINC24	Practical OR	8 hrs.	30	70	100
PS04CINC25	Project	8 hrs.	30	70	100
PS04CINC26	Practical OR	8 hrs	30	70	100
PS04CINC27	Project	8 hrs.	30	70	100
PS04CINC28	General Viva-voce	1 hrs	-	50	50
PS04EINC21					
OR PS04EINC22	ANY ONE	-do-	30	70	100
	Total	Marks		• 	650

* **Project work** (as optional) in place of practicals; to be offered to some of the students, based on their merit, interest and placement with the teachers (Marks : 200). The project shall have to be carried out under the allotted teacher(s) and a dissertation shall be submitted and will be assessed for internal (60 marks) and external (140 marks), in the usual manner.

PS04CINC21: Spectroscopy-II

Unit-1	Atomic Absorption/Atomic and Flame Emission Spectroscopy	25%		
	Absorption of radiation by atoms; equipment: radiation sources (Hollow cathode			
	lamps and electrode less discharge lamps); atomizers (Flame and carbon);			
	wavelength selector and detectors; interferences in atomic absorption spectroscopy;			
	applications and problems: qualitative and quantitative analysis. Introduction to			
	plasma, arc and spark emission spectroscopy; equipment: inductively coupled plasma			
	spectrometer and flame photometer; applications and problems			
Unit-2	Mossbauer Spectroscopy:	25%		
	Mossbauer effect, experimental methods, hyperfine interactions, molecular structure,			
	electronic structure, applications of Mossbauer spectroscopy			
Unit-3	Electron Spectroscopy:	25%		
	Introduction, principle and theory of electron spectroscopy, Notations, X-ray			
	Photoelectron Spectroscopy (XPS), Ultraviolet Photoelectron Spectroscopy (UPS),			
	Auger Electron Spectroscopy (AES), Instrumentation of electron spectroscopy,			
	Qualitative and Qualitative analysis by electron spectroscopy, Chemical shifts,			
	Unwanted features in electron spectra, Applications of electron spectroscopy			
Unit-4	Microscopic Techniques:	25%		
	Introduction to scanning electron microscopy (SEM), Scanning tunneling			
	microscopy (STM) and atomic force microscopy (AFM); basic principles and theory;			
	instrumentation and operating parameters and applications			

Reference Books

- 1. Principles of Instrumental Analysis by Skoog, Holler and Neiman, Sunders College Publishers (USA).
- 2. Undergraduate Instrumental Analysis by James W. Robinson, Marcel Dekker, Inc. (Ny.) Introduction to Instrumental Analysis by Robert D. Braun, Pharme Med Press Hyderabad- India.
- 3. Instrumental Method of Analysis by Willard, Merritt, Jr., Dean and Settle Jr., CBS Publishers and distributors, New Delhi, India.
- 4. Microscopic and Spectroscopic Imaging of the Chemical State by Michael D. Morris, Marcel Dekker, Inc. (NY.).
- 5. Instrumental Methods of Chemical Analysis, 24th Edition 2005 by B. K. Sharma, Goel Publishing House, Meerut.

PS04CINC22: Solid State and Supramolecular Chemistry

Unit-1	Crystal Structure : Forms of solids, law of constancy of interfacial angles, crystal	25%
	systems, crystal classes, lattice structure, unit cell, designation of crystal faces, law of	
	rational indices, planes of cubic lattice, types of lattices,	
	Crystal Defects and Non-Stoichiometry: Perfect and imperfect crystals, instrinsic and	
	extrinsic defects – point defects, line and plane defects, Vacancies – Schottky defects and	
	Frenkel defects. Thermodynamics of Schottky and Frenkel defect formation, defects and	
	nonstoichiometry	
Unit-2	Optical Properties : Optical reflectance, photoconduction and photoelectric effects,	25%
	Lasers, Organic solids – electrically conducting solids, organic charge transfer complex,	
	organic metals, new superconductors	
	Solid State Reactions : General Principles, types of solid state reactions, experimental	
	procedures, co-precipitation as a precursor to solid state reactions, Wagner mechanism of	
	solid state reactions, sol-gel method, kinetics of solid state reactions	
U nit-3	Basics of Supramolecular Chemistry	25%
	Definition and development of supramolecular chemistry, Classification of	
	supramolecular Host-Guest compounds, Receptors, coordination and lock and key	
	analogy, Binding constants, Cooperativity and the chelate effect, Preorganisation and	
	complementarity, Thermodynamic and kinetic selectivity and discrimination, Nature of	
	supramolecular interactions, Solvation and hydrophobic effects, Supramolecular concepts	
	and design	
U nit-4	Cation binding hosts	25%
	Selectivity of cation complexation, Soft ligands for soft metals, Different cation binding	
	hosts	
	Anion binding hosts	
	Introduction, From cation hosts to anion hosts- a simple change in pH, Some anion hosts	
	Binding of neutral molecules	
	Interactivity complexes of neutral molecules: solution and solid state binding, Some	
	neutral binding hosts	
Ref	erence Books	

- 1. Introduction to Solids by L. V. Azaroff, Mc.Graw Hill Co., New York
- 2. Principles of the Solid State by H. V. Kheer, Wiley Eastern
- 3. Solid State Chemistry by D. K. Chakrabarthy by New Age International
- 4. Solid State Chemistry and Its Applications by Anthony R. West, John Willey & Sons
- 5. Crystal Structural Analysis by M. J. Buerger, John Wiley and Sons, New York
- 6. Elements of X-ray Diffraction by B. D. Cullity Addision Wesley Publ. Co., London
- 7. Supramolecular Chemistry by Jonathan W. Steed, Jerry L. Atwood, John Wiley & Sons, Ltd.

8. Supramolecular Chemistry- Fundamentals and Applications by Katsuhiko Ariga, Toyoki Kunitake Springer

PS04CINC23: Bioinorganic Chemistry

Unit-1	Bioinorganic Chemistry-1	25%
	The elements of living system: The biological roles of metal ions, Calcium biochemistry,	
	Iron biochemistry, Nonmetals biochemistry	
	Enzymes exploiting acid catalysis: Carbonic anhydrase, Carboxy peptidases.	
Unit-2	Bioinorganic Chemistry-II	25%
	Redox catalysis: Iron sulphur proteins and non-heme iron, Cytochromes of the electron	
	transport chain, Cytochrome P-450 enzymes, Coenzyme B ₁₂ , Blue copper proteins Metals	
	in medicine: Antibiotic and related compounds, Chelate therapy, Inhibition and	
	poisoning, Metal complexes as probes of nucleic acids	
Unit-3	Metal ions and complexes in Medicine – I	25%
	Metal deficiency and diseases, chelation therapy for metal ion detoxification, Lithium	
	drugs in neurological disorders, gold antiarthritis drugs, pharmacology of auranofin, Role	
	of metal ions in the action of antibiotics, Metal ions in clinical diagnosis: MRI agents	
	Radiopharmaceuticals: Use of Tc, Re, Sm, Sr, Ga, Co, and I isotopes	
Unit-4	Metal ions and complexes in Medicine – II	25%
	Metal- nucleic acid interactions: Coordination, Non-covalent interactions - intercalation	
	and hydrogen bonding, hydrophobic interactions, DNA strand cleavage, Biological	
	fluorophores, Application of fluorescence quenching in drug-DNA binding studies. DNA	
	binding and mechanistic possibility, Platinum anticancer drugs, structure activity	
	relationship, mechanism of action, aspects of Pt binding to DNA – kinetics, crosslinking,	
	physical effects and biological consequences, Nonplatinum antitumor metal complexes:	
	Ru(III) ammine complexes, Antitumor activity, structure activity relationship, DNA	
	binding and cleavage Anticancer activity of metallocenes, Structure and chemical	
	properties of streptonigrin and its metal complexes, evidence for formation of ternary	
	complexes involving DNA, antitumor activity and mechanism	

Reference Books:

- 1. Elements of Bioinorganic Chemistry, G.N. Mukerjee and Arabinda Das
- 2. Bioinorganic Chemistry, G. R. Chatwal and A. K. Bhagi
- 3. Principles of Bioinorganic Chemistry, S.J. Lippard and J. M. Bersa
- 4. Bioinorganic Chemistry, Bertini, H. B. Gray and S. J. Lippard
- 5. Inorganic Chemistry, Shriver and Atkins
- 6. Inorganic Chemistry, James E. huheey, Ellen A. Keiter and Richard L. Keiter
- 7. Bio-inorganic Chemistry, R.W. Hay R.W. Hay, Ellis Horwood Limited Publishers chichester 1984
- 8. Metal ions in Biological Systems Ed by H. Sigel Vol I to XIX, Marcel Dekker, Basel
- 9. Principles of Bio Inorganic Chemistry, S. J. Lippard and J. M. Berg, University Science Books 1994

- 10. Facets of coordination chemistry Ed by B.V. Agarwala & K.N. Munshi, World Scientific, Singapore, NJ, London.
- 11. Bioinorganic Chemistry, Bertini, Gray, Lippard, & Valentine Viva books pvt ltd (1998)
- 12. BioInorganic Chemistry an introduction, J.A. Cowan, Wiley-VCH

PRACTICALS: PS04CINC24

Ores analysis (7 hrs)

- 1. Analysis of Hematite
 - 1) Acid insoluble residue
 - 2) Iron as Fe_2O_3
 - 3) Iron by redox method (volumetrically)
- 2. Determine the amount of Ca(II), Mg(II), Fe(III) and Carbonate in the given sample of Dolomite ore.
- 3. Determine the amount of Ca(II), Mg(II), Fe(III) and Carbonate in the given sample of Calcite ore.
- 4. To analyze the given sample of Pyrolusite
 - 1) Acid insoluble residue
 - 2) Iron as Iron oxide
 - 3) Mn by using EDTA
 - 4) MnO₂ oxalic acid method/Iodometric method
- 5. To analyze the given sample of Galena ore.
 - 1) Determine the amount of Pb as PbSO₄
 - 2) Determine the amount of Sulphur as BaSO₄
 - 3) Insoluble mass Si as SiO₂
- 6. To determine the amount of Al and Fe in the given sample of Bauxite ore
 - 1) Al as Al_2O_3
 - 2) Fe as Fe_2O_3
- 7. Analysis of Industrial waste

Determination of Calcium fluoride, Calcium and Carbonate from Industrial waste

- Analysis of Cement: (White/Black Cement) Determination of SiO₂, Fe⁺³, Al⁺³, Ca⁺², Mg⁺² in a given sample.
- 9. Determine percentage of metal ions in given mixtures by gravimetric/volumetric/spectrophotometric.
- 10. Miscellaneous

Reference book

- 1. Qualitative Chemical semimicroanalysis by V. N. Alexeyev, Mir Publishers Moscow.
- 2. Vogel's Qualitative Inorganic Analysis by G. Svehla, Orent Longman, New Delhi.
- Vogel's Textbook of Quantitative Chemical Analysis, 5th edition by G. H. Jeffery, J. Bassett, J. Mendham and R. C. Denney, ELBS Publication, 1996, Chapter 2, 3, 11.

PRACTICALS: PS04CINC26

Alloys analysis (7 hrs)

- 1. Analysis of German silver
- 2. Analysis of BRONZE
- 3. Analysis of Solder
- 4. Analysis of Brass
- 5. Analysis of Steel
- 6. Analysis Aluminum alloy
- 7. Percentage of metal ions in given mixtures
- 8. Miscellaneous

Reference book

- 1. Modern Analytical Chemistry, 1st Edition by D. Harvey, The McGraw-Hill Pub, 2000.
- 2. Instrumental Methods of Analysis, 4th edition by G.W. Ewing, McFraw Hill Ltd., 1970.
- 3. Physical Methods in Inorganic Chemistry by R. S. Drago, John-Wiley Pub., 1975.

VIVA VOCE: PS04CINC28

PS04EINC21: Selected Topics in Advanced Inorganic Chemistry-II

Unit-1	Molecular Polyhedra	25%
	Boron hydrides and related structures, Three centre bonds: basic assumptions, Three	
	center orbital in known structures, Equation of balance, Topological theory and its	
	applications	
Unit-2	Photo-inorganic Chemistry	25%
	Basics of photochemistry, quantum efficiencies and quantum yield, consequences of	
	light absorption, luminescence, mutagenic effect of radiation, properties of the	
	excited states, excited states of metal complexes, ligand field photochemistry	
Unit-3	Complex Equilibria	25%
	Types of Complex Equilibria in Solution and Equilibrium Constants: Basic	
	principles, Mathematical functions and their interrelationship. Statistical	
	considerations. Factors affecting the stability constants of Metal complexes. Mixed-	
	ligand complexes.	
	Experimental Methods for the Determination of Stability Constants	
	Ion exchange methods, Polarographic methods. Solubility methods and Least square	
	method for computing stability constant	
Unit-4	Safety in Chemistry Laboratories	25%
	Good Laboratory Practices: Elements of Good Laboratory Practices; Standard	
	Operating Procedures; Quality Assurance, Handling of Hazardous Materials, Toxic	
	Materials (Various types of toxins and their effects on humans), Explosives and	
	Inflammable Materials, Types of fire extinguishers, Bioactive materials, Recycling	
	and Waste Disposal, Management in Chemical Laboratories. Legal provisions	
	regarding ChemicalLaboratories, Environment Protection Act, 1986.	

Reference Books

- 1. Structure and Bonding, Vols. 1& 6, Springer-Verlag.
- 2. Inorganic Chemistry byPhillips and Williams, Oxford.
- 3. Non-stoichiometric Compounds by L. Mandelcorn, Academic Press.
- 4. Inorganic Chemistry byK.F. Purcell and J.C.Kotz,Half-Saunders International Editons.
- 5. Boron Hydrides byWilliam N. Lipscomb, Benjamin.Inc.

- 6. Chemistry of The Metal Chelate Compounds by A.E. Martell and M. Calvin, Prentice-Hall Inc., Englewood Cliffs, New Jersey.
- 7. Chelates in Analytical Chemistry, Vol. 1 by H.A. Flaschka and A. J. Barnard, Marcel Dekker Inc., N.Y.
- 8. Co-ordination Chemistry Reviews, Vo1.7(l) by A.B.P. Lever, Elsevier Publishing Company, Amsterdam.
- 9. New Pathways in Inorganic Chemistry byE.A.V. Ebsworth, University Press, Cambridge.
- 10. Chemistry of Complex Equilibria by M.T. Beck, Van Nostrand Reinhold Company, London.
- 11. Determination of Stability Constants by F.J.C. Rossotti and H.Rossotti.
- 12. Progress in Inorganic Chemistry, Vol. 1 by F.A.Cotton, IntersciencePub.Inc., New York.
- Vogel's Textbook of Quantitative Chemical Analysis, 5th edition by G. H. Jeffery, J. Bassett, J. Mendham and R. C. Denney, ELBS Publication, 1996, Chapter 2, 3, 11.
- 14. Modern Analytical Chemistry, 1st Edition by D.Harvey, The McGraw-Hill Pub, 2000.
- 15. Instrumental Methodsof Analysis,4th edition by G.W. Ewing, McFraw Hill Ltd., 1970.
- 16. Inorganic Medicinal and Pharmaceutical Chemistry by Lea and Febiger, John H. Block, E.B. Roche, T.P.Soine and Charles O.Wilson, 1974.
- 17. Physical Methods in Inorganic Chemistry byR. S. Drago, John-Wiley Pub., 1975.

PS04EINC22: Inorganic Polymers and Inorganic Materials

Unit-1	Inorganic Polymers	25%	
	Introduction, Classification of inorganic polymers, General properties of inorganic polymers, Characterization of inorganic polymers, Crystalline and amorphous		
	polymers, Solubility parameter, Glass-transition temperature, Modulus-temperature		
	curves, Important inorganic polymers: phosphorus-based polymers, Sulphur-based		
	polymers, Boron-based polymers, Silicon-based polymers, Pre-ceramic Inorganic		
	polymers		
Unit-2	Co-ordination Polymers	25%	
	Introduction to Co-ordination Polymers, Classification of coordination polymers,		
	Organometallic polymers, Metal organic frameworks (MOFs), General method of		
	preparation of MOFs, Ferrocene-Based Polymers, Synthesis and properties,		
	Application of coordination and organometallic polymers		
Unit-3	Aluminosilicates	25%	
	Introduction, Classifications, Clays, Talc, Zeolites and related silica based materials,		
	Phosphate-based Zeolites, Synthesis and Characterization of Aluminosilicates,		
	Modification of Zeolites, Applications of aluminosilicates in heterogeneous catalysis		
Unit-4	Metal Clusters	25%	
	Introduction, Cluster Compounds of the Main Group Elements-Alkali Metals, Boron		
	Hydrides, Carboranes and Metallocarboranes, Cage Compounds of Non-Metal		
	Elements, Transition Metal Clusters, Metal carbonyl and halide clusters		

Reference Books

- 1. Inorganic Polymers, 2ndEdition byJ.E. Mark, H.R. Allcock, R. West, Oxford University Press, Inc., New York.
- 2. Inorganic and Organometallic Polymers by R.D. Archer, Wiley-VCH, Inc.
- 3. Inorganic Polymers by D.N. Hunter.
- 4. Modern Aspects of Inorganic Chemistry by H.Emeleus and A.G.Sharpe, Universal Books Stall, NewDelhi Routledge& Kegan paul, London.
- 5. Inorganic Polymers by G.R.Chatwal, Himalaya Publishing House.
- 6. Advanced Inorganic Chemistry by F.A. Cotton and G. Wilkinson, John-Wiley & Sons, New York.
- 7. Catalysis and Zeolites: Fundamentals and Applications byJ.-L. Guth, H. Kessler, J. Weitkamp, L. Puppe (Eds.), Springer-Verlag Berlin Heidelberg GmbH.
- 8. Zeolites and Catalysis: Synthesis, Reactions and Applications, Edited byJ.Cejka, A.Corma, and S. Zones, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
- 9. Introduction to Zeolite Science and Practice byH. van Bekkum, E.M. Flanigen, P.A. Jacobs and J.C. Jansen (Eds.), Elsevier Publications, Amsterdam.
- 10. Cluster Chemistry byGuillermo Gonzalez-Moraga, Springer- Verlag Berlin Heidelberg GmbH.
- 11. Metal clusters in chemistry by P. Braunstein, L.A. Oro, P.R. Raithby, Wiley-VCH Verlag GmbH, Weinheim.