

SARDAR PATEL UNIVERSITY Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2021-2022

M.Sc. Chemistry M Sc Chemistry Semester-I

	Μ	Sc Chemistry S	emester-I
Course Code	PS01CCHE52	Title of the	Organic Chemistry-I
		Course	
Total Credits	0.4	Hours per	04
of the Course	04	Week	
Course	1. To understand the concepts of chirality, topicity, prostereoisomerism,		
Objectives:	stereoselective, and stereospecific reactions		
	 To understand the role of reactive intermediates in molecular rearrangements. To learn addition, elimination, aromatic substitution reactions, and mechanism. 		
	meenumbhi		

Course Content		
Unit	Description	Weightage* (%)
1.	Stereochemistry: Concept of Chirality, Chirality and Symmetry, Sawhorse, Newman and Fischer Projections, Interconversion of Projection formula, Elements of Chirality including Chiral centre, Chiral axis, Chiral plane and Helicity, CIP Nomenclature, Molecules with more than one Chiral centre, Total number of Stereoisomer in such molecules, Enantiomeric and Diastereomeric Relationship, Chirogenicity and Stereogenecity, Pseudochirality, Topicity and Prostereoisomerism, Determination of Topic relationship between Homomorphic ligands in Intact Molecules, Concept of stereoselective and stereospecific reactions, Optical Purity.	25%
2.	Reactive Intermediates in Molecular Rearrangements:Molecular Rearrangement involving Non-Classical Carbocation:Neighbouring group participation by $\pi(pi)$ and $\sigma(sigma)$ bonds.Molecular Rearrangement involving Carbocation:Wagner-Meerwein, Pinacol-Pinacolone, Demjanov and BeckmannRearrangement.Molecular Rearrangement involving Carbanion:Favorskii, Benzil-Benzilic Acid, Stevens and Sommelet-HauserRearrangement.Molecular Rearrangement involving Free radical:Riemer-Tiemann, Fries RearrangementMolecular Rearrangement involving Nitrene:Curtius, Schmidt, Lossen and Hoffmann RearrangementMolecular Rearrangement involving Carbene: Wolf Rearrangement[Emphasizing on Various Techniques for Determination of Mechanism]	25%
3.	Elimination and Addition Reactions: Elimination Reactions:	25%

	Mechanisms and Orientation, E1, E1cb, E2 spectrum, Effects of Changes in Substrate, Base, Leaving Group and Medium on Reactivity, Hoffman and Saytzef eliminations, Bredt's Rule, Pyrolytic Eliminations- Cope and Chugaev eliminations. Addition reactions: Mechanisms, Orientation and Reactivity, Markonikoff and anti-Markonikoff additions, Reactions including Hydro-Halo, Hydro-Hydroxy, Hydro-Alkoxy, Dihydro, Dihydroxy, dihalo, ozonolysis, Woodward-Prevost Hydroxylation.	
4.	Aromatic substitution reactions (Electrophilic and Nucleophilic): Mono-substituted benzenes - Reactivity and Orientations, Orientation in Benzene Rings with more than One Substituent, ipso substitution, Orientation in Other Ring Systems, Primary Kinetic Isotope Effect and Mechanisms of Fridel- Craft reactions, Nitration, Sulphonation, Halogenation, Diazocoupling and Formylation. Benzyne Mechanisms for Aromatic Nucleophilic substitution reactions. Addition – Elimination mechanism.	25%

Learning learning methodology comprises classroom teaching, use of e-resources, library books, IT tools, encouraging students to participate in seminars/workshops, presentation by students, assigning work based upor subject requirements, etc.	Teaching- Learning Methodology
--	--------------------------------------

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Course Outcomes: Having completed this course, the learner will be able to	
1.	Detect chirality in molecular structure using symmetry
2.	Recognize the relationship between enantiomeric and diastereomeric structures

SARDAR PATEL UNIVERSITY Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2021-2022

3.	Understand the concept of topicity and prostereoisomerism
4.	Appreciate the difference between stereoselective and stereospecific reactions
5.	Manipulate the probable reaction mechanism for chemical transformation
6.	Employ various name reactions for their useful applications
7.	Learn the differences between elimination, addition Reactions and substitution reactions
8.	Identify the stereochemical consequences during chemical reactions
9.	Practice various techniques for determination of reaction mechanism

Suggested References:		
Sr. No.	References	
1.	Organic Reactions, Stereochemistry and Mechanism: P.S. Kalsi (New Age.)	
2.	Principles of Organic Synthesis: R.O.C Norman & J.M. Coxon (ELBS)	
3.	Mechanism in Organic Chemistry: Peter Sykes (Orient Longman)	
4.	Modern Methods of Organic Synthesis: W. Carruthers (Cambridge)	
5.	Organic Reaction Mechanism: V.K.Ahluwalia and R.K.Parashar (Narosa)	
6.	Organic Chemistry: Clayden, Greeves and Warren (Oxford)	
7.	Advanced Organic Chemistry: Jerry March(Wiley)	

On-line resources to be used if available as reference material

On-line Resources
