

PROGRAMME STRUCTURE Master of Science in Chemistry MSc (Organic Chemistry) Semester: III

Programme Outcome (PO) - For MSc Chemistry Programme	 Master of Science program provides extended theoretical and practical knowledge of different science subjects. Master of Science programme at Sardar Patel University is designed keeping the overall back ground preparation in mind for the student to either seek a job or to become an entrepreneur. The students, after completion of Bachelor of Science can select the master's programme in the subject they have had at the final year or in a related discipline (depending upon eligibility criteria prescribed by university). Programme outcomes: At the end of the program, the students will be able to Have a deep understanding of both the theoretical and practical concepts in the respective subject. Understand laboratory processes and use scientific equipments and work independently. Develop research temperament as a consequence of their theory and practical learning. Communicate scientific information in oral and written form. Understand the issues related to nature and environmental contexts and think rationally for sustainable development. The students are able to handle unexpected situations by critically analyzing the problem.
Programme Specific Outcome (PSO) - For MSc Chemistry Semester - I	 Students will have a firm foundation in the fundamentals and application of current chemical and scientific theories including those in Analytical Inorganic Chemistry, Organic Chemistry, Physical Chemistry, Chemistry and Industrial polymer Chemistry. After completing M.Sc. chemistry program, students will be able to: Demonstrate and apply the fundamental knowledge of the basic principles in various fields of Chemistry. Apply knowledge to build up small scale industry for developing endogenous product. Collaborate effectively on team-oriented projects in the field of chemistry or other related fields. Communicate scientific information in a clear and concise manner both orally and in writing. Inculcate logical thinking to address a problem and become result oriented with a positive attitude. Enhance the scientific temperament among the students so as to develop a research culture and implementation of the policies to tackle the burning issues at global and local level.

 Apply the knowledge to develop the sustainable and eco-friendly technology. Take up global level research opportunities to pursue Ph.D programme targeted approach and specific competitive exams conducted by service commission Accept enormous job opportunities at all level of chemical industries, pharmaceutical industries and
placements in R & D.

	At least 40% Marks in the University Examination in each paper and 40% Marks in the aggregate of University and Internal examination in each course of Theory, Practical & 40% Marks in Viva-voce.	

					T	**	-	Component of Marks		
Course Type	Course Code	Name of Course	Type of Course T /P		Credit	Hours per Week	Exam Duration in hrs	Internal Total/ Passing	External Total/ Passing	Total Total/ Passing
Core Course	PS03CORC51	Organic Spectroscopy	EM & EN	Т	4	4	3	30/10	70/28	100/40
	PS03CORC52	Disconnection Approach	EM	Т	4	4	3	30/10	70/28	100/40
	PS03CORC53	Heterocyclic Chemistry	EM	Т	4	4	3	30/10	70/28	100/40
Core Course	PS03CORC54	Practical in Organic Chemistry OR	EM&SD	Р	4	8	6	30/10	70/28	100/40
(Any One)	PS03CORC55	Project Work	EM&SD	Р	4	8		30/10	70/28	100/40
Core Course	PS03CORC56	Practical in Organic Chemistry OR	EM&SD	Р	4	8	6	30/10	70/28	100/40
(Any One)	PS03CORC57	Project Work	EM&SD	Р	4	8		30/10	70/28	100/40
Core Course	PS03CORC58	Comprehensive Viva		-	1	1			50/20	50/20
Elective Course	PS03ECHE51	Separation methods	EM& EN	Т	4	4	3	30/10	70/28	100/40
(Any one)	PS03ECHE52	Analytical techniques in Materials characterization	EM& EN	Т	4	4	3	30/10	70/28	100/40
	PS03ECHE53	Applications of Inorganic Chemistry in Industry	EM& EN	Т	4	4	3	30/10	70/28	100/40
	PS03ECHE54	Selected Topics in Advanced Inorganic Chemistry-I	EM& EN	Т	4	4	3	30/10	70/28	100/40

	PS03ECHE55	Mechanical and Electrical Properties of Polymers	EM& EN	Т	4	4	3	30/10	70/28	100/40
	PS03ECHE56	Selected Topics in Polymers-I	EM& EN	Т	4	4	3	30/10	70/28	100/40
	PS03ECHE57	Advanced Characterization Techniques	EM& EN	Т	4	4	3	30/10	70/28	100/40
	PS03ECHE58	Selected Topics in Physical Chemistry- II	EM& EN	Т	4	4	3	30/10	70/28	100/40
	PS03ECHE59	Selected Topics in Organic Chemistry	EM& EN	Т	4	4	3	30/10	70/28	100/40
	PS03ECHE60	Occupational Practices	EM& EN	Т	4	4	3	30/10	70/28	100/40
					25					650
Add-on Course	MOOCs	course from Swayam Portal			-		-			

EMPLOYABILITY = EM, ENTREPRENEURSHIP = EN and SKILL DEVELOPMENT = SD

* Project work (as optional) in place of practicals; to be offered to some of the students, based on their merit, interest, and placement with the teachers (Marks: 200). The project shall have to be carried out under the allotted teacher(s) and a dissertation shall be submitted and will be assessed for internal (60 marks) and external (140 marks), in the usual manner.

ſ

SARDAR PATEL UNIVERSITY Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-23

Master of Science, Organic Chemistry M.Sc. Organic Chemistry, Semester III

Course Code	PS03CORC51	Title of the Course	Organic Spectroscopy
Total Credits of the Course	4	Hours per Week	4
Course Objectives:	theory, and instru NMR, and Mass2. To impart kn spectroscopic tec various molecule	umentation of U spectrometry. nowledge in the chniques for c s. le to choose the	ze students with the basic principles, V-Visible, IR, ¹ H NMR, ¹³ C NMR, 2D- e theory and principles of the above characterization and differentiation of e particular spectroscopic technique for

Cours	Course Content				
Unit	Description	Weightage* (%)			
1.	UV Spectroscopy: Theory and principles of electronic transition and UV absorption; chromophores and auxochromes; Woodward-Fieser rules for dienes and enones; characteristic absorptions in alkenes and alkynes, alcohols, ethers, amines, carbonyl compounds, Characteristic absorptions in aromatic compounds; Factors influencing λmax, effects of conjugation, the effect of solvent; Differentiation of compounds/ isomers by UV Infrared Spectroscopy: Theory and principles; molecular vibrations; calculations of vibrational frequencies; Factors influencing IR frequency; characteristic group absorptions in hydrocarbons, aromatic compounds, alcohol, and phenols, ethers, carbonyl compounds, amines, nitriles, nitro compounds, carboxylic acids, and halide, Differentiation of compounds/isomers by IR	25			
2.	PMR Spectroscopy: Proton resonance condition, Various aspects of PMR spectra–(1)Number of signals, (2) Position of signals: chemical shifts, shielding, and deshielding, (3) Splitting of the signals (spin-spin coupling), coupling constants – vicinal, geminal, long-range, and virtual couplings, (4)Intensity of signal (Peak area or integration); factors affecting chemical shifts, paramagnetic and diamagnetic anisotropy; Pople notation and spin assignments; chemical shift equivalence and magnetic equivalence; first order and second-order	25			

Syllabus with effect from the Academic Year 2022-23	
spectra, complex PMR spectra; simplification of the complex PMR spectra- (1) Increasing field strength (high-resolution spectra), (2) Use of shift reagents, (3) Spin-spin decoupling (Double resonance), (4) Proton exchange, (5) Deuterium exchange, (6) Nuclear Overhauser Effect (NOE); Differentiation of compounds/ isomers by PMR; To identify structure from PMR data	
 3. ¹³C-NMR Spectroscopy: Difficulties and solution for recording ¹³C-NMR spectra; recording of ¹³C-NMR spectra – scale, solvents, solvent signals, and their positions, multiplicity, ¹³C-¹H coupling constant; proton-coupled and decoupled ¹³C spectra, broadband decoupling, off-resonance technique; Chemical shifts in ¹³C spectra – chemical shift calculation for alkanes, alkenes and alkynes, chemical shift calculation in internal and terminal substituted compounds, aromatic compounds; To identify structure from ¹³C NMR data; Use of ¹³C spectra – Differentiation in Primary, Secondary and Tertiary Carbons by DEPT-45°, DEPT-90°, DEPT-135° spectra. 2D NMR Spectroscopy: Theory and Principles Of 2D NMR Spectroscopy (COSY); To interpret or to draw HOMCOR (¹H-¹H COSY, DQFCOSY, INADEQUATE), HECTOR (¹³C-¹H COSY, ¹H-¹³C COSY i.e. HMQC, HMBC), NOESY, and TOCSY spectra. 	
4. Mass Spectroscopy: Theory and principles of mass spectroscopy; Instrumentation; low and high-resolution mass spectra; Ionization techniques – Electron Impact(EI) ionization, Chemical Ionization (CI), Field Desorption (FD), Fast Atom Bombardment (FAB), Electrospray Ionization (ESI), and Matrix-Assisted Laser Desorption/Ionization (MALDI); Determination of molecular weight and molecular formula, nitrogen rule, detection of molecular ion peak, metastable ion peak; Fragmentations – rules governing the fragmentations, McLafferty rearrangement; Interpretation of mass spectra of the different class of compounds – saturated and unsaturated hydrocarbons, aromatic hydrocarbons, alcohols, ethers, ketones, aldehydes, carboxylic acids, amines, amides, compounds containing halogens; To write possible fragmentation for given compound; To identify structure from mass spectral data; To identify structure from combined spectral data.	

Evaluation Pattern

Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Cou	Course Outcomes: Having completed this course, the learnerwill be able to				
1.	Understand how light interacts with the organic molecules.				
2.	Understand fundamental and basic terms involved in NMR (1D, 2D), IR, UV-Visible and MS.				
3.	Choose particular technique for specific analytical purpose.				
4.	Know effects of various factors on the spectra.				
5.	Interpret spectral data.				
6.	Identify structure of organic compounds by using combined spectral data.				
7.	Distinguish isomers and other closely related compounds by using these spectral techniques.				

Sugge	Suggested References:				
Sr. No.	References				
1.	Spectroscopic Identification of Organic Compounds, R. M. Silverstein and F.X. Webster, 6 th edition (John Wiley & Sons).				
2.	Introduction to Spectroscopy, D. L. Pavia, G. M. Lampman and G. S. Kriz, 3 rd edition (Thomson Brooks/Cole).				
3.	Spectroscopic Methods in Organic Chemistry, D. H. Williams and I. Fleming, 4 th edition (McGraw–Hill Book Company).				
4.	Organic Spectroscopy, William Kemp, 3 rd edition (Palgrave).				
5.	Organic Spectroscopy – Principles and Applications, Jag Mohan, 2 nd edition (Narosa Publishing House).				

6.	Spectroscopy of Organic Compounds, P. S. Kalsi, 5 th edition (New Age International Publishers).
7.	Elementary Organic Spectroscopy: Principles and Chemical applications (Revised Edition), by Y. R. Sharma (S. Chand Publishing).

On-line resources to be used if available as reference material:

On-line Resources: https://swayam.gov.in/

Master of Science, Organic Chemistry M.Sc. Organic Chemistry, Semester III

Course Code	PS03CORC52	Title of the Course	Disconnection Approach
Total Credits of the Course	4	Hours per Week	4 hrs

Course	The disconnection approach is a wonderful tool for the chemist because it is
Objectives:	more specific to the medicinal and pharmaceutical industry. It provides clear
	understanding to design the new routes for the any new target Molecules

Cours	Course Content		
Unit	Description	Weightage* (%)	
1.	Introduction and definition of disconnection, various terminology used in disconnection. One and two group disconnection, disconnection and synthesis of alcohols, olefins, simple ketones, acids and its derivatives, disconnections in 1,3- dioxygenated skeletons, preparation of β - hydroxy carbonyl compounds, α , β - unsaturated carbonyl compounds, 1,3-dicarbonyls, 1,5-dicarbonyls, and use of Mannich reaction	25	
2.	Illogical Two group disconnection: Disconnection and synthesis of α-hydroxy carbonyl compounds, 1,2- diols, 1,4- and 1,6- dicarbonyl compounds. Disconnections based on Diels-Alder reaction and its use in organic synthesis. Functional group analysis: Strategy of saturated hydrocarbon synthesis, functional group addition to intermediates.	25	
3.	 Disconnection and synthesis of acyclic and cyclic hetero compounds: Synthesis of ethers, amines, nitrogen, oxygen and sulphur containing five and six membered heterocycles. Synthesis of small ring compounds: Special method for small rings preparations, synthesis of 3 and 4 membered ring compounds. Use of ketenes in organic synthesis, Radical reactions in organic synthesis. 	25	
4.	 Protecting groups: Protection of organic functional groups, protecting reagents and removal of protecting groups. Protection of amine: Via N-benzylamine formation, amide formation, carbamate formation. Protection of alcohol: Via alkyl ether formation, benzyl ether formation, trityl ether formation, silyl ether formation, acetal formation, methoxyl methyl ether formation, ester formation. Protection of 1,2- and 1,3-diols, Protection 	25	

of acid via ester formation, Protection of aldehyde via acetal formation, Protection of ketone via ketal formation.

Fragmentation Reactions: Grab fragmentation: Polarization of C-C bond, fragmentation controlled by stereochemistry, ring expansion by fragmentation. Eschenmoser Fragmentation: Controlling double bond using fragmentation.
Synthesis of some complex molecules: Synthesis of Mesoporhyrin – IX and Cephalosporin C. Synthesis of Nootkatone via Fragmentation

of three membered, four membered and six membered rings.

Teaching-	To meet the effective teaching and the learning requirements, teaching-
Learning	learning methodology will be blend of lectures / PPT presentation /
Methodology	seminar / tutorials / assignments etc.

Evalu	Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%	
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%	
3.	University Examination	70%	

Cou	Course Outcomes: Having completed this course, the learner will be able to		
1.	Learn the various disconnection approach based on small and larger molecules with having different hetero atom in cyclic/acyclic and aromatic or may be the hetaryl ring systems.		
2.	Focus the protecting and deprotecting groups with various organic scaffolds.		
3.	Learn natural product chemistry, total synthesis etc.		
4.	Learn quick assumption of the synthetic equivalent and design the novel route for the provided any target.		
5.	Appreciate the role of chemistry in pharmaceutical industries for the synthesis of pharmaceutically active agents.		

Sugge	Suggested References:		
Sr. No.	References		
1.	Designing Organic Synthesis – A Programmed Introduction to the Synthon Approach, Stuart Warren, John Wiley & Sons (1994).		
2.	Organic Synthesis: The disconnection approach, Stuart Warren, John Wiley & Sons (1994).		
3.	Selected Organic Synthesis, Ian Fleming, John Wiley & Sons (1977).		
4.	Organic Chemistry, 2 nd edition by Jonathan Clayden, Nick Greeves& Stuart Warren, Oxford University Press.		
5.	Modern Methods of Organic Synthesis, 4 th edition by W. Carruthers& Iain Coldham, Cambridge University Press.		
6.	Modern Organic Synthesis: An introduction by George S. Zweifel & Michael H. Nantz, W. H. Freeman & Company.		
7.	Greene's Protective Groups in Organic Synthesis, 4 th edition, by P. G. M. Wuts and T. W. Greene, Willey Interscience.		

On-line resources to be used if available as reference material

On-line Resources

Master of Science, Organic Chemistry M.Sc. Organic Chemistry, Semester III

Cours	se Code	PS03CORC53	Title of the Course	Heterocyclic Chem	istry
Total Credits of the Course		4	Hours per Week	4 hrs	
	Course Objectives: The aim of the course is to provide a basic theoretical under heterocyclic chemistry, including alternative general method different kind of ring synthesis which imply the new heterocy by changing the functionality with respective positions in skelete			nodology for yclic systems	
Cours	se Content				
Unit	Description	on			Weightage* (%)
1.	Indole: h nitration, aldehyde nitro con with nuc reducing reactions reactions Synthesi ketone), o Reaction Azoles: t 1,3-Azolo nucleoph 1,2-Azolo	sulphonation, halog s and ketones, reactin npounds. Mannich rea leophilic reagents, rea agents, reaction wi , reaction of indoly of substituted indoles s: Fischer-indole sym Grandberg synthesis, as and synthesis of be ypical reaction of 1,2 es: as: electrophilic reage	of indole derivation of a cylatic ion of α, β- unsatication, reaction we action, reaction we th carbenes, elected C-X compounds thesis (from pheny Reissert synthesis enzo[b]thiophene - and 1,3-azoles. nts, addition at niti- led-1,3-azoles, all ophilic reagents, a	trogen, substitution at carbon, kyl-1,3-azoles. Synthesis. ddition at nitrogen,	25
2.	Quinolin Reaction halogena alkylation with disp agents, C	tion, reactions with n, arylation, aminati lacement of halide, m Grignard reaction. Ele	bon: proton exch nucleophilic rea on, hydroxylation netal halogen exch ectrophilic substit	erocycles ange, nitration, sulphonation, gents with hydride transfer: n. Nucleophilic substitutions ange, reactions with reducing ution reactions of substituted Reactions of quinolone-N-	25

 oxide and isoquinoline-N-oxide with acid chloride, POCl₃, SOCl₂, diethylcyanophosphonate. Synthesis of quinoline: Combes synthesis, Conrad-Limpach, Knorr synthesis, Pfitzinger synthesis, Pomeranz-Fritsch synthesis. Heterocyclic system containing two nitrogen atoms: Cinnoline, Quinazoline, Quinoxaline, Phthalazine: Synthesis and their reactions. 	
 Reactions and synthesis of six membered heterocycles containing nitrogen. Pyridine-N-oxide: Reactivity, electrophilic addition and substitution, nucleophilic addition and substitution reactions, rearrangement, electrophilic substitution reaction of substituted Pyridine-N-oxide, Synthesis of PNO. Diazines: Introduction, Reactions: addition at nitrogen, substitution at carbon, oxidizing agents, nucleophilic agents, replacement of hydrogen, replacement of good leaving group, reaction of oxydiazine, Anrorc mechanism. Synthesis of diazines. Triazine: Introduction, reactions and synthesis. 	25
 4. Reactions and synthesis of oxygen containing heterocycle: Typical reactivity of pyrilium and benzopyrilium ions, pyrones and benzopyrones. Pyrilium salts: Reactions: electrophilic reagents, nucleophilic reagents and reducing agent. Synthesis from 1,5-dicarbonyl compounds, 1,3-dicarbonyl compounds and ketones. Alkene acylation. 2- and 4-Pyrone: Reactions: Electrophilic addition and substitution, nucleophilic reagents, cycloaddition reactions. Synthesis of 2- and 4- Pyrones. Benzopyrilium salt: Reaction with nucleophilic reagents, reducing and oxidizing agents, Synthesis from phenols and 1,3- dicarbonylcompounds, ortho-hydroxybenzaldehydes and ketones. Benzopyranones: Reaction with electrophilic reagents, nucleophilic reagents, oxidizing and reducing agents, cycloaddition and photochemical reactions. Synthesis of Coumarin: Phenols and 1,3- ketoesters, from o-hydroxybenzaldehydes and esters. Isocoumarin synthesis. 	25

Teaching-	To meet the effective teaching and the learning requirements, teaching-
Learning	learning methodology will be blend of lectures / PPT presentation /
Methodology	seminar / tutorials / assignments etc.

Evalu	Evaluation Pattern		
Sr.	Details of the Evaluation	Weightage	

No.		
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Cou	Course Outcomes: Having completed this course, the learner will be able to		
1.	Able to understand the basic concept of name reactions for the heterocyclic chemistry likewise: various name reactions, ordinary reactions for many organic transformations.		
2.	Aware about all heterocyclic ring systems such as mono-, bi-, tri-, tetra- and fused ring. systems with all backgrounds in terms of naming of a new compound.		
3.	Gains the broader knowledge regarding the Hantzsch-Widman nomenclature systems. These course provides a broader knowledge to the students for understanding the nomenclature systems of any kinds of heterocyclic molecules.		
4.	Able to apply these theoretical concepts in the practical courses.		

Sugge	Suggested References:				
Sr. No.	References				
1.	Heterocyclic Chemistry, 4th Edition by J. A. Joule & K. Mills, Published by Chapman & Hall (1995)				
2.	Principles of modern heterocyclic chemistry, edited by Leo A. Paquette, Published by Pearson Benjamin Cummings (1968)				
3.	Heterocyclic Chemistry, 3rd Edition by Thomas L. Gilchrist, Published by Prentice Hall (1997)				
4.	The Structure & Reactions of Heterocyclic Compounds, edited by Michael Henry Palmer, Published by Edward Arnold (1967)				

5.

Heterocyclic chemistry by V. K. Ahluwalia, Narosa publishing house.

On-line resources to be used if available as reference material

On-line Resources

Master of Science, Organic Chemistry M.Sc. Organic Chemistry, Semester III

Course Code	PS03CORC54	Title of the Course	Practical in Organic Chemistry
Total Credits of the Course	4	Hours per Week	8
Course Objectives:	 To make able t mixture and separt Identify the e molecule. To impart kn distillation, crysta 	owledge of basics of separation of organic ternary mixtures. e to identify type and chemical nature of components of the arate solid, semi-solid and liquid organic mixtures. elements and functional groups presents in the organic knowledge of different purification techniques including tallization etc. we to identify the structure of unknown organic compound	

Course Content				
Unit	Description	Weightage* (%)		
1.	Separation and identification of Ternary Organic Mixture and Spectral Exercise A. Separation and identification of Ternary Organic Mixture Minimum two (02) mixtures should be given from each of the following type 1. Solid + Solid + Solid 2. Solid + Solid + Solid (one soluble) 3. Solid + Solid + Liquid 4. Solid + Liquid + Liquid 5. Liquid + Liquid + Liquid	100		
	B. Spectral Exercise Structure interpretation of organic compounds from spectral data			

Learning learning methodology will be blend of practicals/ demonstrations/le	ts, teaching-
Methodology PPT presentation / seminar / tutorials / assignments etc.	ons/lectures /

Evalu	Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage	
1.	Practical Examination (As per CBCS R.6.8.3)	30 %	
2.	University Examination	70%	

Cou	Course Outcomes: Having completed this course, the learnerwill be able to			
1.	Learn basics of separation of organic ternary mixtures			
2.	Identify type and chemical nature of components of the mixture			
3.	Separate solid, semi-solid and liquid organic mixtures			
4	Identify the elements and functional groups presents in the organic molecule.			
5	Purify the organic compound using different techniques including distillation, crystallization etc.			
6	Record physical constants for the organic compounds.			
7	Identify the structure of unknown organic compound using combined spectral data.			
8	Appreciate good laboratory practices.			

Suggested References:		
Sr. No.	References	
1.	Vogel's Textbook of practical organic chemistry, 5 th edition, B. S. Furniss, A. J. Hannaford, P. W. G. Smith, A. R. Tatchell (Pearson Education)	
2.	Comprehensive practical organic chemistry: Qualitative analysis, V. K. Ahluwalia, Sunita Dhingra (Universities Press)	
3.	Organic structures from spectra, 5 th edition, L. D. Field, S. Sternhell, J. R. Kalman (Wiley: A John Wiley & Sons Ltd publication)	
4.	Elementary Organic Spectroscopy: Principles and Chemical applications (revised edition), Y. R. Sharma (S. Chand Publishing)	

On-line resources to be used if available as reference material:

On-line Resources: https://swayam.gov.in/

Master in Science, Organic Chemistry M. Sc. Organic Chemistry, Semester – III

Course Code	PS03CORC55	Title of the Course	Project Work
Total Credits of the Course	04	Hours per Week	08
Course	To provide exposi	are to research p	roblem and carry out research in the novel

Course	To provide exposure to research problem and carry out research in the novel
Objectives:	and fascinating topics of research in chemistry.
5	

Course Content	
Description	Weightage* (%)
Research work in laboratory on a topic given by the supervisor	100%

Teaching- Learning Methodology	Laboratory exercise and thesis writing
memodology	

Evalu	Evaluation Pattern		
Sr. No.			
1.	Internal Presentation and Viva-voce Examination (As per CBCS R.6.8.3)	30%	
2.	University Examination	70%	

Course Outcomes: Having completed this course, the learner will be able to proceed for literature survey, synthesis and characterization of compounds/ materials using modern analytical and spectroscopic techniques and their study for various applications. They will be trained in research for pursuing higher studies. They will get training for working in research in academic and industries.

Suggested References: Published research articles on given research topic.

On-line resources to be used if available as reference material

Published papers by reputed publishers like American Chemical Society, Royal Society of Chemistry, Wiley, Elsevier, etc.

Master of Science, Organic Chemistry M.Sc. Organic Chemistry, Semester III

Course Code	PS03CORC56	Title of the Course	Practical in Organic Chemistry
Total Credits of the Course	4	Hours per Week	8
Course Objectives:	intermediates.2. To make able to3. To familiarize vand pigments.	perform dyeing with effect of va	various classes of dyes, pigments and gusing various dyeing techniques. arious factors on color and shades of dyes on and purification of dyes and pigments.

Course	Course Content		
Unit	Description	Weightage* (%)	
1.	 Synthesis and Application of Dyes & Intermediates A. Synthesis of Azo dye (including azoic dye, disperse azo dye and acid azo dye) and it's dying on various fiber. Dying of Indigo (Vat dying). Also, some intermediate use for abovedying. B. Synthesis of dyes, pigments and intermediate 1. o-Cresolphthalein 2. Phenolphthalein 3. Fluorescein and itsmethylation 4. Quinizarin 5. 1,5-Dinitroanthraquinone 6. Bisazoacid dye 7. Acetoacetanilide pigment 8. Indigo from phenylglycin-o-carboxylic acid and its dying (Vat dying) C. Industrial Safety and Hygiene 	100	

Teaching-	To meet the effective teaching and the learning requirements, teaching-
Learning	learning methodology will be blend of practicals/ demonstrations/lectures /
Methodology	PPT presentation / seminar / tutorials / assignments etc.

Evaluation Pattern

Sr. No.		
1.	1. Practical Examination (As per CBCS R.6.8.3)	
2.	University Examination	70%

Cou	Course Outcomes: Having completed this course, the learnerwill be able to	
1.	Synthesis various classes of dyes, pigments and intermediates	
2.	Perform dyeing using various dyeing techniques	
3.	Identify effect of various factors on color and shades of dyes and pigments	
4	Isolate and purify dyes and pigments.	
5	Record physical constants for dyes and pigments Appreciate good laboratory practices	
6		

Sugges	Suggested References:	
Sr. No.	References	
1.	Vogel's Textbook of practical organic chemistry, 5 th edition, B. S. Furniss, A. J. Hannaford, P. W. G. Smith, A. R. Tatchell (Pearson Education)	
2.	Comprehensive practical organic chemistry: Preparation and Quantitative analysis, V. K. Ahluwalia, Renu Aggarrwal (Universities Press)	

On-line resources to be used if available as reference material:

On-line Resources: https://swayam.gov.in/

Master in Science, Organic Chemistry M. Sc. Organic Chemistry, Semester – III

Course Code	PS03CORC57	Title of the Course	Project Work
Total Credits of the Course	04	Hours per Week	08

Course Objectives:	To provide exposure to research problem and carry out research in the novel and fascinating topics of research in chemistry.

Course Content	
Description	Weightage* (%)
Research work in laboratory on a topic given by the supervisor	100%

Teaching-	Laboratory exercise and thesis writing
Learning	
Methodology	

Evaluation Pattern				
Sr. No.	Details of the Evaluation	Weightage		
1.	Internal Presentation and Viva-voce Examination (As per CBCS R.6.8.3)	30%		
2.	University Examination	70%		

Course Outcomes: Having completed this course, the learner will be able to proceed for literature survey, synthesis and characterization of compounds/ materials using modern analytical and spectroscopic techniques and their study for various applications. They will be trained in research for pursuing higher studies. They will get training for working in research in academic and industries.

Suggested References: Published research articles on given research topic.

On-line resources to be used if available as reference material

Published papers by reputed publishers like American Chemical Society, Royal Society of Chemistry, Wiley, Elsevier, etc.

Master in Science, Organic Chemistry M. Sc. Organic Chemistry, Semester – III

Course Code	PS03CORC58	Title of the Course	Comprehensive Viva		
Total Credits of the Course	01	Hours per Week	01		
Course Objectives:To assess the overall knowledge of the student in the relevant subjects covered in core as well as elective courses.					

