

Master of Science in Botany M.Sc. Botany Semester I

Course Code	PS01EBOT51	Title of the Course	Biostatistics
Total Credits of the Course	4	Hours per Week	4
Course Objectives:	 Recognize determinin Understan Choose an or two var Use techno for one or Interpret si Appreciate To learn e analysis of Able to information Produce a survival da Explain fut studies, i experiment studies, the control grows Explain the population Explain the hypothesis 	the importance ag scope of infere ding of interval of ad apply appropri- iables. ology to perform two variables. tatistical results of the power of date explain how state f biological reseat create graphs on about data, and statistical summ ata in a single saturd indamental conce- ncluding the tal studies, the e outcome means oup or control po- ne concept of a tal. he logic behing s tests. he logic behing s tests of compute them a	ce of data collection and its role in ence. estimation and hypothesis testing. riate statistical methods for analyzing one in descriptive and inferential data analysis correctly, effectively, and in context. ata. istical techniques are incorporated in the arch data and its presentation. using Stata to communicate important d interpret these graphs. ary of continuous, categorical or censored mple using Stata, and interpret it. epts in the design and analysis of medical difference between observational and e unit of randomization in randomized sure of a study, the comparability of the opulation, and adjustment for confounding. a random, representative sample from a and statistical confidence intervals and and parametric tests, permutation tests, variability and bootstrap confidence nd interpret them.

Course Content		
Unit	Description	Weightage* (%)
1.	Elementary concepts of Biostatistics: Definitions, Importance and Scope of Statistics; Types of Survey Methods; Importance of Data Collection & Data Collecting methods; Concept of a statistical population and sample from a population; Methods of drawing sample from the population: Simple Random Sampling (SRS), Stratified Random Sampling, Cluster Sampling; Experimental Method; Types of Biological Data: Qualitative (Categorical) Data: Nominal and Ordinal	

	Data Quantitative (Numerical) Data: Individual, Discrete and Continuous Data; Presentation of Data: Construction of frequency distribution (Simple or Discrete and Grouped): Rules for constructing Grouped frequency distribution; Diagrammatic Presentation: Bar Diagram (Chart), Simple, Sub – divided (Component), Percentage, Multiple, Pie Chart; Graphical Presentation: Stem-and-Leaf Plots, Line Graph, Histogram, Frequency Polygon, Frequency Curve, Ogives or Cumulative Frequency Curves.	
	Descriptive Statistics: Measures of Central Tendency: Mean or Arithmetic Mean, Median, Mode, Partition Values: Quartiles, Deciles, Percentile;	
	Measures of Dispersion (Variation): Range, Quartile Deviation (Q.D), Inter Quartile Range (IQR), Mean Deviation (MD), Standard Deviation (SD) and Variance, Coefficient of Variation (C.V), Box and Whisker Plot.	
	Measures of Skewness and Kurtosis: Absolute and Relative Skewness; Karl – Pearson's Coeff. of Skewness, Bowley's Coeff. of Skewness, Skewness based on moments; Moments, Kurtosis.	
2.	Correlation and Regression Analysis:	
	Correlation: Meaning, Applicaions & Types of Correlation; Positive, Negative, Non–Sense or Spurious;	
	Methods of studying correlation: Scatter Plot (diagram) method, Karl-Pearson's Correlation Coefficient (Product Moment) Method; Properties of Correlation Coefficient Coefficient of determination and its meaning: Spearman's Rank Correlation Coefficient; Properties of Rank Correlation Coefficient	
	Regression: Meaning, Properties and Application of Regression Analysis and Regression Coefficients;	
3.	Concepts of Probability and Probability Distributions: Elements of Probability theory; Classical definition of Probability; Types of Experiments and Events; Theorems/Laws of Probabilities; Conditional Probability; Bayes' Theorem;	
	Importance and Properties of Probability Distributions: Binomial Distribution, Poisson Distribution, Normal Distribution.	
	Testing of Hypothesis: Procedure of testing hypothesis; Standard Error and Sampling distribution;	
4.	Different tests of Significance: Large Sample Test: Z - test for (Single) population proportion; Z - test for difference between two	

population proportions; Z - test for (Single) population mean; Z - test for difference between two population means; Small Sample Test: t – test for (Single) Population Mean, t – test for difference between two population means (Unpaired t-test), t – test for difference between two population means (Paired t-test); Chi (χ^2) test and Goodness of fit;

F-test and Analysis Of Variance (ANOVA): Techniques of Analysis of Variance; One–Way Classification, Two–Way Classification model;

Teaching- Learning Methodology	Online / Offline / Presentation / Videos
Evaluation Pattern	n

Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Course Outcomes: Having completed this course, the learner will be able to	
1.	Develop the ability to apply the methods while working on a research project work.
2.	Describe the appropriate statistical methods required for a particular research design.
3.	Choose the appropriate research design and develop appropriate research hypothesis for a research project.
4.	Develop a appropriate framework for biological research studies.

Suggested References:	
Sr. No.	References
1.	Gupta S.C. and Kapoor V.K. (1986): Fundamental of Mathematical Statistics Sultan Chand and Sons Publishers.

2.	Statistical Methods by S. C. Gupta Sultan Chand & Sons publishers.
3.	Principles of Biostatistics by Marcello Pagano and Kimberlee Gaurea, Chapman and Hall/CRC publisher.
4.	Biostatistics: A Foundation For Analysis in the Health Sciences by Daniel, Wayne (Seventh Edition), Wiley India Pub.

On-line resources to be used if available as reference material

On-line Resources

- 1. Exploration of the resources available in NCBI and PUBMED
- 2. Exploration of the resources available for primary and secondary Nucleotide Databases
- 3. Exploration of the resources available for primary, secondary and tertiary Protein Structural Databases
- 4. Retrieval and detailed study of a Genbank Entry using an accession number
- 5. Retrieval and analysis of a gene sequence "AF375082" in FASTA format
- 6. Finding official Symbol, alias name, chromosome number and ID for gene using NCBI
- 7. Retrieval and analysis of a protein sequence from protein database
- 8. Primary structure analysis of a protein by various tools
- 9. Secondary structure analysis of a protein by various tools
- 10. Tertiary protein structure analysis using RASMOL / SPDBV
- 11. Similarity Search using BLAST and Interpretation of Results
- 12. Pair-wise and multiple sequence alignment using BLAST with PAM and BLOSUM Matrix
- 13. Pair-wise and multiple sequence alignment using ClustalW PAM and BLOSUM Matrix

